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Abstract

This paper is the first of its kind to compare the probability of default (PD) estimates for low default portfolios
(LDPs) from various methods–notably Pluto and Tasche (2006), Van Der Burgt (2007), Benjamin, Cathcart and
Ryan (2006) and Roengpitya (2012)–using the historical data of sovereign borrowers from the years 1975-2009. The
comparison results give insightful information to bank supervisors and banks regarding the PD model validation
and possible underestimation of PD values. We found that the most conservative approaches tend to be that of
Pluto and Tasche (2006) and Roengpitya (2012) while Van Der Burgt (2007) seemed to yield the least conservative
estimates. Moreover, for prudent supervisory purposes, we suggested that the accuracy ratio (AR) in the Van
Der Burgt (2007) CAP curve method should be restricted to be between 40% and 80% to prevent a possible
underestimation of credit risk. Finally, we presented the necessary and sufficient conditions to ensure that the
rank ordering of PD estimates from Pluto and Tasche (2006)’s most prudent approach is satisfied.
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Introduction

This paper aims at providing necessary information regarding the probability of default (PD) model validation

on low-default portfolios (LDPs)1 to bank supervisors as well as banks. While there are a few theoretical PD

estimation models, comparing the level of conservatism between PD estimates from these models has not been

addressed. Hence, we provided empirical comparisons of PD estimates obtained from employing different theo-

retical approaches so as to give information to bank supervisors and banks regarding the level of conservatism of

estimated PDs from each model. Moreover, we highlighted the conditions needed to improve the performance of

PD estimates from Pluto and Tasche (2006)’s approach and noted our concern on the possible underestimation

of credit risk when using Van Der Burgt (2007)’s method.

Although both regulators and internal rating-based (IRB) banks encounter challenges regarding the estima-

tions of IRB parameters for LDPs, both will deal with it from different aspects. For regulators, the most important

concern has to do with the underestimation of credit risk associated with LDPs as a result of data scarcity. The

rarity of default data leads to the difficulty in backtesting the PDs estimated from the risk models against the

true historical default rates. For banks, the challenging task of LDP risk parameter estimation urges them to

exclude these LDPs from the IRB calculation, though such treatment is not supported by the industry, as claimed

in the joint industry working group discussion paper between the British Banker Association, London Investment

Banking Association and International Swaps and Derivatives Association (BBA-LIBA-ISDA paper). Moreover,

banks may choose to employ either the simple historical average approach or expert judgment to estimate the

PDs instead, which can possibly progress to the underestimation of credit risk previously mentioned.

To obtain the insight on the performance of existing PD estimation models for LDPs, we considered four

existing theoretical measures under consideration: (1) the most prudent estimation by Pluto and Tasche (2006);

(2) CAP curve calibration by Van Der Burgt (2007); (3) the margin of conservatism by Benjamin, Cathcart and

Ryan (2006); and (4) hybrid models by Roengpitya (2012).2 We then calculated the PD estimates using each

method on the virtual sovereign portfolio. For the sovereign portfolio, we used the S&P sovereign rating defaults

from the years 1975-2009, with each country’s rating status determined as of 2009.

From the comparisons, we found that the PD estimates from the hybrid models were comparable to, and in

some cases were more conservative than the estimates from the most prudent method. When compared between
1The general definition of low default portfolios (LDPs) varies very much across concerned parties, it can be loosely defined as

portfolios with too limited default events to obtain a robust probability of default (PD) estimation according to the principles outline
in the Basel II or internal risk management objectives. The examples of borrowers that are regarded as having these LDPs are
sovereigns, banks, highly-rated corporations and special forms of lending such as project finance.

2The likelihood approach by Forrest (2005) was omitted due to its calculation intensity from having too many rating grades.
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the most prudent and the margin of conservatism approach, the results were mixed, depending on how the rating

grades were segmented. Among all, the CAP curve calibration method yielded the least conservative estimates.

In addition, we discovered that the optimal k used to fit the exponential function to the actual CAP curve

outlined in Van Der Burgt (2007) was very sensitive to the granularity of how one computed the cumulative num-

ber of borrowers. Therefore, when this method is employed, we suggested that, when validating PD estimates for

this model, bank regulators should suggest the accuracy ratio (AR) of the fitted curve to be between 40%− 80%,

as seen in most best practices. Finally, since the most prudent method does not guarantee that the PD estimates

will be rank-ordered, we then presented the necessary and sufficient conditions to ensure that the rank-order

property of PD estimates from Pluto and Tasche (2006)’s model holds.

This paper has four sections. Section 1 briefly states the causes and existing practices regarding the estimation

of the probability of default (PD) for low default portfolios. Section 2 provides the comparison of PD estimates

using various approaches on the sovereign portfolio. We presented the necessary and sufficient conditions to en-

sure rank ordering for the most prudent method and the in-depth analysis of the CAP curve approach. In Section

4, we offer our policy recommendations regarding the PD estimation methods for LDPs. Concluding remarks

complete this paper.

Section 1: Causes of LDPs and Existing Practices

This section briefly summarizes the discussion on the causes and the existing practices used by banks to deal

with the group obligors whose default events rarely happen but yet need to be forecasted. Generally, one can

group the causes of LDPs into two broad categories: i) LDPs from data segmentation or data collection and ii)

LDPs from rare default events. The former case generally happens when banks segment a broad portfolio with

sufficient default history into too small data pool (to be used in pricing, for example) and consequently create

“involuntary” LDPs. This kind of LDP problem can be solved by using the whole non-segmented data pool to

develop the PD model. Should this approach is chosen, then banks will need to prove that this pooled data model

can reflect well the risk of borrowers in the pool, since banks may have to pull more than one types of borrowers

in order to make possible the model development. For the issue related to data collection, LDPs may arise from

having been collecting the data on both obligors and default events covering only a short time period. Banks

can employ expert judgment during the first stage of the rating process for the group of portfolios in question

and, once the data becomes more abundant (i.e. longer time horizons covered), then a statistical model can be
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developed with constant refinement of the models as banks gather longer time-series data.

The latter case is more problematic. For these types of obligors, the default history is rare or virtually non-

existent. This lack of data can come from several sources, for example, low default events or insufficient number

of obligors in a particular group. This means that, no matter how one is trying to segment or put together

a broader set of obligors, the problem of rare or no default data remains unsolved. Generally, there are two

approaches to deal with this–qualitatively or quantitatively. The common qualitative approach is by using the

expert judgment. The quantitative approach involves increasing the significance, predictability and the ability to

validate the model statistically by various instruments; for example, by increasing data points or by developing

new quantitative estimation approaches around the non-default or low-default environment. These approaches

are discussed in the appendix.

Section 2: Comparison of PD Estimates Using Sovereign Portfolio

This section presents details regarding the data of the virtual portfolios used in our empirical comparison. It is

our intention to choose sovereign borrowers to test the PD estimates from both the existing and our models, due

to their low-default nature as well as data availability to perform the empirical analysis. This section contains

both the information on how our virtual sovereign portfolio is constructed and also the calculation of the PD

estimates from various theoretical approaches.

2.1 Sovereign Portfolio Construction

To create the virtual sovereign portfolio in this study, we need to classify both the current sovereign rating and

the history of defaults for all the countries in our sample. For the sovereign data, we used the S&P sovereign

rating as of January 2009 to classify the rating of each country. The sovereign debt crisis data between 1975-2002

is from Savona and Vezzoli (2008) with the crisis episodes for the years 2003-2008 coming from S&P Sovereign

Ratings History as of December 2009. The table containing information on sovereign debt crisis is presented in

the appendix.

After identifying all the crisis episodes, we then created the population of countries to be included in our

virtual portfolio. We used all of the countries having sovereign ratings as of January 2009. The list of countries

and their January 2009 sovereign ratings is also presented in the appendix. Table 1 below shows the distribution

of countries in our sample across S&P rating grades and the number of cumulative defaults3 in each rating grade.
3The cumulative defaults are accumulated across the years 1975-2009 and across countries within the same rating grade. Therefore,
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TABLE 1: DISTRIBUTION OF COUNTRIES ACROSS RATINGS AND
NUMBER OF CUMULATIVE DEFAULTS

S&P Rating Grades of the Crisis Number of Countries Number of Obligor-year Number of Defaults
AAA 19 646 0
AA+ 3 102 0
AA 3 102 0
AA- 5 170 0
A+ 5 170 1
A 10 340 0
A- 4 136 1

BBB+ 5 170 1
BBB 5 170 3
BBB- 7 238 5
BB+ 8 272 7
BB 5 170 2
BB- 9 306 19
B+ 9 306 1
B 13 442 18
B- 4 136 7

CCC+ 1 34 1
CCC 0 0 0
CCC- 0 0 0
CC 0 0 0
C 0 0 0
D 2 68 4

Total 117 3978 70

This table summarizes the number of countries, the obligor years, and the default (in obligor-years) for each S&P
rating used in the study. The S&P rating shown is as of January 2009.

Since the cumulative defaults are calculated in obligor-years, Table 1 also presents the number of obligor-years

for each rating grade.4 To better track the performance of countries before their default experience, we excluded

the two countries with rating “D” from the sample. Therefore, there are 3910 obligor-years and 66 defaults for

the sovereign portfolio in the calculation.

TABLE 2: INFORMATION OF BOTH SOVEREIGN PORTFOLIO TYPES

Portfolio Type 1: Grouping by SA Rating Guideline
SA Grade S&P Ratings Ob-years Defaults ODR Cum Ob-years Cum Defaults Cum ODR

1 AA-, AA, AA+, AAA 1020 0 0% 3910 66 1.688%
2 A-, A, A+ 646 2 0.310% 2890 66 2.284%
3 BBB-, BBB, BBB+ 578 9 1.557% 2244 64 2.852%
4 BB-, BB, BB+ 748 28 3.743% 1666 55 3.301%
5 B-, B, B+ 884 26 2.941% 918 27 2.941%
6 CCC+ or below 34 1 2.941% 34 1 2.941%

Portfolio Type 2: Grouping by SA Rating Guideline With Adjustments
Modified Grade S&P Ratings Ob-years Defaults ODR Cum Ob-years Cum Defaults Cum ODR

1 AA-, AA, AA+, AAA 1020 0 0% 3910 66 1.688%
2 A, A+ 510 1 0.196% 2890 66 2.284%
3 A- 136 1 0.735% 2380 65 2.731%
4 BBB, BBB+ 340 4 1.176% 2244 64 2.852%
5 BBB- 238 5 2.101% 1904 60 3.151%
6 BB, BB+ 442 9 2.036% 1666 55 3.301%
7 BB- or below 1224 46 3.758% 1224 46 3.758%

This table presents the information on both types of sovereign low-default portfolios, using the S&P ratings as of January
2009.

From Table 1, two types of sovereign portfolio are constructed by grouping the sovereign obligors into fewer

it can be thought of as the accumulation across obligor-years.
4Since there are 34 years in the study, the obligor-year for each rating grade is calculated as the multiplication of total obligors

(or countries) in each rating grade (as of January 2009) and the number of years which is 34.
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ratings. The first type of the sovereign portfolio groups the S&P ratings into Ratings 1-6, using the Bank of

Thailand’s mapping of ECAIs for banks employing standardized approaches (SA). The other type of sovereign

portfolio differentiates the S&P ratings into 7 different grades (which conveniently satisfy the internal rating-based

(IRB) requirement), using the SA mapping and then adjusting so that the observed default rates between rating

grades rank-order more appropriately. Table 2 above then presents the information on both sovereign portfolio

types, including the number of obligors, defaults, the observed default rate (ODR) and cumulative defaults (from

the worst rating grade to the best rating grade) by rating.5

2.2 Empirical Results from Different Estimation Approaches

This section presents the empirical results when comparing PD estimates on LDPs using various methods, namely

the most prudent, the CAP curve, the margin of conservatism and our hybrid models.

2.2.1 Results From the Most Prudent Method

From Table 2, we have in total 3,910 obligor-years with 66 defaults. For the approach used in Pluto and Tasche

(2006), after collapsing the ratings into two cases–6 and 7 grades, we then computed the most prudent estimated

PD for the 6-grade and 7-grade cases as shown in Table 2. For each case, we performed 3 different scenarios:

(1) few defaults but independent default events; (2) few defaults with asset correlation of 4%; and (3) few

defaults with asset correlation of 12%. Also, we did the calculation based on different confidence intervals γ:

50%, 75%, 90%, 95%, 99%, 99.90%. Table 3A below presents the estimation results on the 6-grade portfolio.

TABLE 3A: RESULTS OF MOST PRUDENT PD ESTIMATION FOR 6-GRADE
SOVEREIGN PORTFOLIO

Few defaults but independent default events
Grades/γ 50% 75% 90% 95% 99% 99.90%

1 1.70% 1.85% 1.98% 2.07% 2.23% 2.42%
2 2.31% 2.50% 2.68% 2.80% 3.02% 3.28%
3 2.88% 3.13% 3.36% 3.50% 3.78% 4.11%
4 3.34% 3.65% 3.94% 4.12% 4.47% 4.88%
5 3.01% 3.41% 3.79% 4.03% 4.51% 5.09%
6 4.88% 7.72% 10.95% 13.20% 17.98% 24.08%

Few defaults with asset correlation of 4%
Grades/γ 50% 75% 90% 95% 99% 99.90%

1 1.90% 2.60% 3.46% 4.09% 5.63% 7.58%
2 2.55% 3.43% 4.51% 5.29% 7.16% 9.51%
3 3.15% 4.21% 5.48% 6.40% 8.55% 11.24%
4 3.64% 4.84% 6.25% 7.27% 9.65% 12.61%
5 3.17% 4.31% 5.64% 6.62% 8.89% 11.84%
6 5.18% 8.65% 12.85% 15.87% 22.52% 31.32%

5This cumulative default information is used for the PD estimation according to Pluto and Tasche (2006).
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TABLE 3A: RESULTS OF MOST PRUDENT PD ESTIMATION FOR 6-GRADE
SOVEREIGN PORTFOLIO

Few defaults with asset correlation of 12%
Grades/γ 50% 75% 90% 95% 99% 99.90%

1 2.37% 3.89% 6.09% 7.83% 12.43% 18.41%
2 3.10% 4.98% 7.63% 9.69% 15.01% 21.72%
3 3.79% 5.98% 9.01% 11.33% 17.22% 24.49%
4 4.32% 6.76% 10.07% 12.58% 18.88% 26.57%
5 3.80% 6.07% 9.16% 11.54% 17.55% 25.17%
6 5.90% 10.67% 16.80% 21.38% 31.70% 44.99%

It can be seen from Table 3A above that the PD estimates shown in bold font fail to meet the rank ordering

property, as mentioned in Pluto and Tasche (2006). In other words, the estimated PD of the worse rating grade

is lower than the PD of the better one. One can test, for example, that the rank-order failure of Grade 5 in the

zero-correlation case came from it failing the third condition in Proposition 1 stated in the upcoming Section 3.1.

An interesting fact can be drawn from the behavior of PD estimates in Table 3A. That is, the severity of

the rank-order failure increases with asset correlation. As the asset correlation increases, the number of rank-

order failures increases and expands to higher confidence intervals also. For example, when default events are

independent, there are only three failures. However, when the asset correlation increases to 4% or 12%, the

number of rank-order failures grows to be five. Therefore, as one allows the asset to be more highly correlated,

the rank ordering of PD estimates becomes even more unstable. To cope with this rank-order failure, the portfolio

then is re-grouped into 7 ratings instead to meet the conditions proposed in Proposition 1.

TABLE 3B: RESULTS OF MOST PRUDENT PD ESTIMATION FOR 7-GRADE
SOVEREIGN PORTFOLIO

Few defaults but independent default events
Grades/γ 50% 75% 90% 95% 99% 99.90%

1 1.70% 1.85% 1.98% 2.07% 2.23% 2.42%
2 2.31% 2.50% 2.68% 2.80% 3.02% 3.28%
3 2.76% 2.99% 3.21% 3.35% 3.61% 3.92%
4 2.88% 3.13% 3.36% 3.50% 3.78% 4.11%
5 3.19% 3.46% 3.73% 3.89% 4.21% 4.59%
6 3.34% 3.65% 3.94% 4.12% 4.47% 4.88%
7 3.81% 4.19% 4.55% 4.78% 5.22% 5.75%

Few defaults with asset correlation of 4%
Grades/γ 50% 75% 90% 95% 99% 99.90%

1 1.90% 2.60% 3.46% 4.09% 5.63% 7.58%
2 2.55% 3.43% 4.51% 5.29% 7.16% 9.51%
3 3.02% 4.05% 5.27% 6.16% 8.26% 10.87%
4 3.15% 4.21% 5.48% 6.40% 8.55% 11.24%
5 3.47% 4.63% 5.99% 6.97% 9.28% 12.13%
6 3.64% 4.84% 6.25% 7.27% 9.65% 12.61%
7 4.13% 5.47% 7.04% 8.17% 10.76% 14.00%

Few defaults with asset correlation of 12%
Grades/γ 50% 75% 90% 95% 99% 99.90%

1 2.37% 3.89% 6.09% 7.83% 12.43% 18.41%
2 3.10% 4.98% 7.63% 9.69% 15.01% 21.72%
3 3.64% 5.77% 8.72% 10.99% 16.76% 23.92%
4 3.79% 5.98% 9.01% 11.33% 17.22% 24.49%
5 4.14% 6.49% 9.71% 12.16% 18.32% 25.86%
6 4.32% 6.76% 10.07% 12.58% 18.88% 26.57%
7 4.86% 7.54% 11.12% 13.82% 20.50% 28.58%
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The most prudent PD estimates of the 7-grade portfolio are presented in Table 3B above. It can be seen from

Table 3B that the PD estimates are now ranked, as the rating system now satisfies the necessary and sufficient

conditions outlined in Proposition 1, which ensures the rank ordering of PD estimates using this approach. We

also obtained that the higher the asset correlation was, the more conservative PD estimates became, sharing a

similar finding as in Pluto and Tasche (2006).

2.2.2 Results From the CAP Curve Method

With the same sovereign portfolio, we computed the estimated PDs for the 6-grade and 7-grade cases using the

same exponential function and PD calibration methodology as defined in Van Der Burgt (2007). The results are

summarized in Table 4.

TABLE 4: RESULTS OF THE CAP CURVE PD ESTIMATION FOR
SOVEREIGN PORTFOLIO

SA Grade Obligor-years Defaults Cum Ob-years Cum Defaults ODR CAP PD
1 1020 0 100.00% 100.00% 0.000% 0.361%
2 646 2 73.91% 100.00% 0.310% 0.704%
3 578 9 57.39% 96.97% 1.557% 1.152%
4 748 28 42.61% 83.33% 3.743% 1.963%
5 884 26 23.48% 40.91% 2.941% 3.782%
6 34 1 0.87% 1.52% 2.941% 5.469%
Average 1.688% 1.659%
Estimated k 3.1426

Modified SA Grade Obligor-years Defaults Cum Ob-years Cum Defaults ODR CAP
1 1020 0 100.00% 100.00% 0.000% 0.178%
2 510 1 73.91% 100.00% 0.196% 0.411%
3 136 1 60.87% 98.48% 0.735% 0.585%
4 340 4 57.39% 96.97% 1.176% 0.758%
5 238 5 48.70% 90.91% 2.101% 1.040%
6 442 9 42.61% 83.33% 2.036% 1.508%
7 1224 46 31.30% 69.70% 3.758% 3.747%
Average 1.688% 1.593%
Estimated k 4.2726

From the table, the estimated PD in each grade is quite in line with the observed default rate. However, the

estimated PD for the fourth rating in the 6-grade case is being underestimated. Van Der Burgt (2007) concluded

that this methodology was sensitive to the obligor distribution, especially both default and non-default obligors.

Hence, a big change in the obligor number in a particular rating can significantly gives a poor estimated PD in

that grade. This also corresponds to our mathematical proof in Proposition 2 of Section 3.2 that the shape of

the CAP curve depends solely on the actual cumulative defaults and cumulative obligors. Consequently, to make

sure that such PD estimation is still appropriate for our portfolio, we recommended checking the stability of the

portfolio distribution through time. Once the portfolio changes, the review of the CAP curve PD calibration is

required.
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2.2.3 Results From the Margin of Conservatism Method

Benjamin et al (2006) proposed the margin of conservatism approach which, in part, employed the most prudent

estimation methodology in Pluto and Tasche (2006). However, rather than estimating the upper bound PD for

each grade, this method begins with using the best grade estimated PD as the conservative portfolio PD. Then,

one calculates the corresponding scaling factor to scale-up the initial estimated PD for each rating grade. As a

result, factors that drive the the margin of conservatism PDs come from both the obligor distribution as well as

the choice of method used in the initial PD estimation.

Using again our sovereign portfolio, we simulated our look-up table first for various levels of asset correlation–

0%, 4% and 12%–and with different confidence levels–50%, 75%, 90%, 95%, 99%, 99.9%. The results of the simila-

tion yield the conservative portfolio PD. The following table presents our conservative portfolio PD.

TABLE 5A: PD LOOK-UP TABLE FOR VIRTUAL SOVEREIGN PORTFOLIO
Correlation 50% 75% 90% 95% 99% 99.90%
0% 1.70% 1.85% 1.98% 2.07% 2.23% 2.42%
4% 1.90% 2.60% 3.46% 4.09% 5.63% 7.58%
12% 2.37% 3.89% 6.09% 7.83% 12.43% 18.41%

This table presents PD look-Up table for virtual sovereign portfolio under
the parameter assumption: number of obligor-years of 3,910 and number of
default 66.

In order to estimate the initial PD for each rating grade, we chose to fit a curve to the actual historical default

data. Since the actual default rate does not guarantee the rank ordering across grades, an appropriate curve fitting

technique is employed to solve this problem. The exponential function is used for our initial PD estimation, as

it explains better the relationship between the estimated PDs and the rating grades and is in accordance with

the common assumption that the probability of default is of exponential form. Therefore, we modeled the PDs

of our virtual portfolio by minimizing the root-mean-square error (RMSE) of the exponential equation between

the long run default rate and the rating grade, as follows.

RMSE =

√√√√ 1
N

N∑
i=1

(yi − [a · eb·(i−1)])2, (1)

where f(xi) = a · eb·(i−1) is our exponential function choice, i is the rating grade and yi is the long run observed

default rate for rating grade i. In our exponential curve fitting, a is an intercept (i.e. the PD of the best rating

grade) while b represents the estimated coefficient.6

6One note regarding this technique. The fitted PD obtained from the RMSE approach is very sensitive to the outliers of i for the
rating system with a small number of rating grades. If there is a low degree of an outlier deviation or if there is a large number of
obligors in the portfolio, we can fit our exponential curve without constraints. Nonetheless, if there is a high degree of the outlier
deviation or a low number of obligors in each grade, it is inevitable to set some constraints on the fitting, or else the estimated PD
of the high-risk grade possibly can exceed one.
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Tables 5B and 5C present the parameter estimates and the initial PD for each rating grade resulted from this

exponential curve fitting. Also, the account-weighted portfolio PD is calculated to get the initial portfolio PD.

TABLE 5B: RESULTS OF THE EXPONENTIAL PARAMETER ESTIMATES
AND RMSE WITHOUT PD CONSTRAINTS

Sovereign Rating System a b RMSE
6-grade case 0.009 0.285 0.90%
7-grade case 0.003 0.419 0.31%

This table presents results of the exponential parameter estimate and root
mean square error for 6-GRADE and 7-GRADE sovereign portfolio without
any PD constraints.

TABLE 5C: RESULTS OF THE FINAL PDS FROM EXPONENTIAL CURVE
FITTING AND MARGIN OF CONSERVATISM ADJUSTMENTS

6-rating Grade Case
Grade Initial PD No of Obligor-years Weight Weight × initial PD

1 0.87% 1020 26.09% 0.23%
2 1.15% 646 16.52% 0.19%
3 1.53% 578 14.78% 0.23%
4 2.04% 748 19.13% 0.39%
5 2.71% 884 22.61% 0.61%
6 3.61% 34 0.87% 0.03%

Account-weighted initial portfolio PD 1.69%

7-rating Grade Case
Grade Initial PD No of Obligor-years Weight Weight × initial PD

1 0.30% 1020 26.09% 0.08%
2 0.46% 510 13.04% 0.06%
3 0.69% 136 3.48% 0.02%
4 1.05% 340 8.70% 0.09%
5 1.06% 238 6.09% 0.10%
6 2.43% 442 11.30% 0.28%
7 3.70% 1224 31.30% 1.16%

Account-weighted initial portfolio PD 1.78%

From the tables above, for the 6-grade rating system, we observed that there was a much higher PD value in

the first rating grade, which is equal to 0.87% as compared to the estimated PD of 0.3% in the 7-grade rating

case. The underlying reason is that the default rate does not distributed rank-orderly and exponentially like the

7-grade case, as seen in Table 2. This disorder nature of default rates also leads to a higher RMSE for the 6-rating

case (0.90% versus 0.31%).

After obtaining both the conservative portfolio PDs and the initial portfolio PDs, we then computed the

scaling factor. The scaling factor is calculated from the following equation

scaling factor =
conservative portfolio PD

initial portfolio PD
. (2)

Using Equation (2), we obtained that, for example, the scaling factor of the 6-rating grade case at 50%

confidence level and 12% asset correlation was 2.37%
1.69% = 1.40.

To get the final PD for each grade, the initial PD estimates, listed in the second column of Table 5C, are

multiplied by the scaling factor calculated using Equation (2). For example, at the 50% confidence level and 12%

asset correlation, the 6-grade case initial PDs should all be multiplied by 1.40, as calculated in Equation (2).
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Also, note that the scaling factor should be used for the initial PD adjustment in a conservative way only. For

example, since our initial portfolio PDs are higher than the conservative portfolio PDs for the 7-rating grade case

at the confidence level of 50% with zero asset correlation, the intital PDs for this case need no adjustment. The

calculation results for both the 6-grade and 7-grade cases are presented in tables 5D and 5E respectively.

TABLE 5D: PD FROM THE MARGIN OF CONSERVATISM METHOD FOR 6-GRADE CASE

ZERO CORRELATION
Grade/γ 50% 75% 90% 95% 99% 99.9%
1 0.88% 0.95% 1.02% 1.07% 1.15% 1.25%
2 1.16% 1.26% 1.35% 1.41% 1.52% 1.65%
3 1.54% 1.68% 1.79% 1.88% 2.02% 2.19%
4 2.05% 2.24% 2.39% 2.50% 2.70% 2.92%
5 2.73% 2.97% 3.18% 3.32% 3.58% 3.89%
6 3.64% 3.96% 4.23% 4.43% 4.77% 5.18%

4% CORRELATION
Grade/γ 50% 75% 90% 95% 99% 99.9%
1 0.98% 1.34% 1.78% 2.11% 2.90% 3.91%
2 1.29% 1.77% 2.36% 2.79% 3.84% 5.16%
3 1.72% 2.36% 3.14% 3.71% 5.10% 6.87%
4 2.30% 3.14% 4.18% 4.94% 6.80% 9.16%
5 3.05% 4.17% 5.55% 6.57% 9.04% 12.17%
6 4.06% 5.56% 7.40% 8.75% 12.04% 16.21%

12% CORRELATION
Grade/γ 50% 75% 90% 95% 99% 99.9%
1 1.22% 2.00% 3.14% 4.04% 6.41% 9.49%
2 1.61% 2.65% 4.15% 5.33% 8.47% 12.54%
3 2.15% 3.53% 5.52% 7.10% 11.27% 16.69%
4 2.86% 4.70% 7.36% 9.46% 15.02% 22.25%
5 3.80% 6.25% 9.78% 12.57% 19.96% 29.56%
6 5.07% 8.32% 13.02% 16.75% 26.58% 39.37%

TABLE 5E: PD FROM THE MARGIN OF CONSERVATISM METHOD FOR 7-GRADE CASE

ZERO CORRELATION
Grade 50% 75% 90% 95% 99% 99.9%
1 0.30% 0.33% 0.35% 0.37% 0.40% 0.43%
2 0.46% 0.50% 0.54% 0.56% 0.61% 0.66%
3 0.69% 0.76% 0.81% 0.85% 0.91% 0.99%
4 1.06% 1.15% 1.23% 1.29% 1.39% 1.51%
5 1.60% 1.75% 1.88% 1.96% 2.11% 2.29%
6 2.45% 2.66% 2.85% 2.98% 3.21% 3.48%
7 3.73% 4.06% 4.34% 4.54% 4.89% 5.30%

4% CORRELATION
Grade 50% 75% 90% 95% 99% 99.9%
1 0.34% 0.46% 0.61% 0.73% 1.00% 1.35%
2 0.52% 0.71% 0.94% 1.11% 1.53% 2.07%
3 0.78% 1.06% 1.41% 1.67% 2.30% 3.10%
4 1.18% 1.62% 2.15% 2.54% 3.50% 4.72%
5 1.80% 2.46% 3.28% 3.88% 5.34% 7.18%
6 2.74% 3.74% 4.98% 5.89% 8.10% 10.91%
7 4.16% 5.70% 7.58% 8.97% 12.34% 16.62%

12% CORRELATION
Grade 50% 75% 90% 95% 99% 99.9%
1 0.42% 0.69% 1.08% 1.39% 2.21% 3.27%
2 0.65% 1.06% 1.66% 2.13% 3.39% 5.02%
3 0.97% 1.59% 2.49% 3.20% 5.08% 7.53%
4 1.47% 2.42% 3.79% 4.87% 7.73% 11.45%
5 2.25% 3.69% 5.77% 7.42% 11.78% 17.45%
6 3.41% 5.60% 8.77% 11.27% 17.89% 26.50%
7 5.19% 8.53% 13.35% 17.16% 27.25% 40.35%

It can be seen from the table that a similar pattern of PD estimates arises when compared to the most pru-

dent method. That is, the estimated PD increases with the level of asset correlation as well as with the level of
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confidence used.

2.2.4 Results From the Hybrid Models

In Roengpitya (2012), there are three types of hybrid models–hybrid MLE, hybrid forward and hybrid backward.

We then estimated the PDs for both the 6 and 7-rating grade cases, using each type of hybrid models. First, the

results for the hybrid MLE method, assuming first the zero correlation and then the correlation of 4% and 12%,

with different confidence levels–50%, 75%, 90%, 95%, 99%, and 99.90%, are presented in Table 6A.

TABLE 6A: RESULTS OF PD ESTIMATION USING HYBRID MLE METHOD FOR 6 AND 7-GRADE
SOVEREIGN PORTFOLIOS

Independent default events (asset correlation=0)
Grade 50% 75% 90% 95% 99% 99.90% Grade 50% 75% 90% 95% 99% 99.90%

1 1.83% 1.94% 2.05% 2.12% 2.27% 2.46% 1 1.83% 1.94% 2.05% 2.12% 2.27% 2.46%
2 2.48% 2.62% 2.77% 2.87% 3.07% 3.32% 2 2.48% 2.62% 2.77% 2.87% 3.07% 3.32%
3 3.10% 3.28% 3.47% 3.60% 3.85% 4.16% 3 2.96% 3.13% 3.32% 3.44% 3.68% 3.98%
4 3.61% 3.83% 4.07% 4.23% 4.55% 4.95% 4 3.10% 3.28% 3.47% 3.60% 3.85% 4.16%
5 3.33% 3.63% 3.95% 4.17% 4.55% 5.16% 5 3.43% 3.63% 3.85% 4.00% 4.29% 4.65%
6 5.33% 7.55% 10.32% 12.32% 16.73% 22.55% 6 3.61% 3.83% 4.07% 4.23% 4.55% 4.95%

7 4.14% 4.42% 4.72% 4.92% 5.33% 5.83%

Asset correlation=4%
Grade 50% 75% 90% 95% 99% 99.90% Grade 50% 75% 90% 95% 99% 99.90%

1 2.57% 3.12% 3.96% 4.54% 6.13% 8.14% 1 2.57% 3.12% 3.96% 4.54% 6.13% 8.14%
2 3.40% 4.10% 5.13% 5.85% 7.77% 10.18% 2 3.40% 4.10% 5.13% 5.85% 7.77% 10.18%
3 4.17% 5.00% 6.20% 7.04% 9.24% 11.99% 3 4.01% 4.81% 5.98% 6.79% 8.93% 11.61%
4 4.78% 5.72% 7.05% 7.99% 10.40% 13.41% 4 4.17% 5.00% 6.20% 7.04% 9.24% 11.99%
5 4.34% 5.28% 6.54% 7.48% 9.79% 12.83% 5 4.57% 5.47% 6.76% 7.66% 10.01% 12.92%
6 5.84% 8.58% 12.15% 14.85% 20.95% 29.30% 6 4.78% 5.72% 7.05% 7.99% 10.40% 13.41%

7 5.40% 6.45% 7.90% 8.95% 11.56% 14.84%

Asset correlation=12%
Grade 50% 75% 90% 95% 99% 99.90% Grade 50% 75% 90% 95% 99% 99.90%

1 3.83% 5.19% 7.52% 9.06% 13.96% 19.81% 1 3.83% 5.19% 7.52% 9.06% 13.96% 19.81%
2 4.91% 6.56% 9.33% 11.13% 16.73% 23.30% 2 4.91% 6.56% 9.33% 11.13% 16.73% 23.30%
3 5.89% 7.79% 10.92% 12.95% 19.09% 26.23% 3 5.69% 7.53% 10.59% 12.57% 18.61% 25.62%
4 6.65% 8.73% 12.11% 14.33% 20.85% 28.47% 4 5.89% 7.79% 10.92% 12.95% 19.09% 26.23%
5 6.11% 8.09% 11.26% 13.51% 19.81% 27.66% 5 6.40% 8.41% 11.72% 13.86% 20.26% 27.70%
6 7.16% 11.01% 16.27% 20.32% 29.81% 41.30% 6 6.65% 8.73% 12.11% 14.33% 20.85% 28.47%

7 7.41% 9.67% 13.28% 15.69% 22.57% 30.66%

The results from Table 6A indicate that the hybrid MLE method share a similar rank-ordering problem as seen

in the most prudent method for the 6-grade case, as shown in the bold font. This is because it fails to meet the

necessary and sufficient conditions outlined in Roengpitya (2012).7 Also, the rank-order problem appears more

frequently as the asset correlation increases. However, for the 7-grade case, the rank order problem disappears–the

results which are similar to the case of the most prudent estimation.

Table 6B exhibits the PD estimates using the hybrid forward method and various asset correlation levels for

both the 6-grade and 7-grade cases.

7As an example, consider a case between rating grades 4 and 5 with zero correlation. The ratio
L(~pMLE

4 )

L(~pMLE
5 )

= 8.75 × 10−53 while

1
(p4)28(1−p4)720

= 7.71× 1051. Therefore, the multiplication of both terms,
L(~pMLE

4 )

L(~pMLE
5 )

× 1
(p4)28(1−p4)720

, yields 8.75× 10−53 × 7.71×

1051 = 0.674 < 1. Hence, the required condition for the zero correlation case is violated, leading to the rank order failure.
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TABLE 6B: RESULTS OF PD ESTIMATION USING HYBRID FORWARD METHOD FOR 6 AND 7-GRADE
SOVEREIGN PORTFOLIOS

Independent default events (asset correlation=0)
Grade 50% 75% 90% 95% 99% 99.90% Grade 50% 75% 90% 95% 99% 99.90%

1 1.69% 1.69% 1.69% 1.69% 1.69% 1.69% 1 1.69% 1.69% 1.69% 1.69% 1.69% 1.69%
2 2.28% 2.28% 2.28% 2.28% 2.28% 2.28% 2 2.28% 2.28% 2.28% 2.28% 2.28% 2.28%
3 2.85% 3.33% 3.66% 3.84% 4.15% 4.51% 3 2.73% 2.73% 2.73% 3.18% 3.64% 4.05%
4 4.32% 4.59% 4.86% 5.03% 5.36% 5.75% 4 2.85% 2.85% 3.45% 3.68% 4.04% 4.42%
5 4.42% 4.78% 5.14% 5.36% 5.82% 6.38% 5 3.74% 4.09% 4.38% 4.56% 4.89% 5.27%
6 14.77% 18.48% 22.32% 24.82% 29.87% 35.98% 6 4.12% 4.46% 4.76% 4.94% 5.30% 5.71%

7 5.29% 5.62% 5.95% 6.16% 6.57% 7.07%

Asset correlation=4%
Grade 50% 75% 90% 95% 99% 99.90% Grade 50% 75% 90% 95% 99% 99.90%

1 2.03% 2.03% 2.03% 2.03% 2.03% 2.03% 1 2.03% 2.03% 2.03% 2.03% 2.03% 2.03%
2 2.70% 2.70% 2.70% 2.70% 2.70% 2.70% 2 2.70% 2.70% 2.70% 2.70% 2.70% 2.70%
3 5.30% 7.26% 9.48% 10.87% 13.19% 15.02% 3 3.19% 3.19% 5.54% 7.05% 10.35% 13.34%
4 9.82% 11.86% 13.67% 14.75% 16.43% 17.91% 4 3.32% 5.54% 7.84% 9.48% 12.27% 14.62%
5 8.86% 10.87% 12.81% 13.97% 16.02% 18.06% 5 7.45% 9.69% 11.95% 13.19% 15.26% 16.85%
6 18.21% 23.44% 28.95% 32.57% 39.84% 48.34% 6 8.09% 10.42% 12.67% 13.92% 15.98% 17.65%

7 11.29% 13.59% 15.60% 16.75% 18.58% 20.29%

Asset correlation=12%
Grade 50% 75% 90% 95% 99% 99.90% Grade 50% 75% 90% 95% 99% 99.90%

1 2.81% 2.81% 2.81% 2.81% 2.81% 2.81% 1 2.81% 2.81% 2.81% 2.81% 2.81% 2.81%
2 3.64% 3.64% 3.64% 3.64% 3.64% 3.64% 2 3.64% 3.64% 3.64% 3.64% 3.64% 3.64%
3 13.04% 18.58% 24.39% 26.63% 31.87% 33.87% 3 4.23% 9.14% 15.16% 19.50% 26.66% 32.00%
4 22.39% 27.16% 32.24% 33.84% 35.83% 37.65% 4 8.62% 13.86% 20.62% 24.63% 31.04% 33.46%
5 18.05% 23.58% 28.16% 31.24% 34.87% 37.69% 5 17.25% 23.52% 27.82% 31.93% 34.37% 36.28%
6 25.52% 33.70% 42.12% 47.37% 56.97% 66.58% 6 16.67% 23.11% 28.09% 32.24% 35.12% 37.20%

7 21.90% 28.05% 33.19% 35.75% 38.31% 40.49%

The PD estimates from the hybrid forward method are more conservative than the PD estimates from the

hybrid MLE method as well as from the most prudent method, assessed at the same confidence level 1− γ. Since

the PD estimates are more conservative than the most prudent principle, this implies that the severity of the

rank-order problem present in the most prudent method can be lessen, as seen in the well-ranked PD estimates

for the 6-grade case here. Similar to the case seen before, the more conservative the PD estimates are, the chance

that they will retain their rank ordering increases, which is what happens here.8

Finally, Table 6C presents the PD estimates using the hybrid backward method.

TABLE 6C: RESULTS OF PD ESTIMATION USING HYBRID BACKWARD METHOD FOR 6 AND 7-GRADE
SOVEREIGN PORTFOLIOS

Independent default events (asset correlation=0)
Grade 50% 75% 90% 95% 99% 99.90% Grade 50% 75% 90% 95% 99% 99.90%

1 1.69% 1.69% 1.69% 1.69% 1.69% 1.69% 1 1.69% 1.69% 1.69% 1.69% 1.69% 1.69%
2 2.28% 2.28% 2.28% 2.28% 2.28% 2.28% 2 2.28% 2.28% 2.28% 2.28% 2.28% 2.28%
3 2.85% 2.85% 3.32% 3.54% 3.89% 4.26% 3 2.73% 2.73% 2.73% 2.73% 3.31% 3.79%
4 3.87% 4.16% 4.42% 4.59% 4.92% 5.32% 4 2.85% 2.85% 2.85% 2.94% 3.60% 4.04%
5 3.65% 3.97% 4.33% 4.52% 4.96% 5.50% 5 3.15% 3.15% 3.72% 3.95% 4.32% 4.73%
6 5.33% 7.55% 10.32% 12.32% 16.73% 22.55% 6 3.30% 3.30% 3.82% 4.07% 4.48% 4.92%

7 4.14% 4.42% 4.72% 4.92% 5.33% 5.83%

8In addition, shown as underlined numbers, the PD estimates for all confidence levels of rating grades 1 and 2 and some lower
confidence levels of grades 3 and 4 are the same. This is because the constrained PD estimates fail to yield the likelihood required, as
mentioned in the final note in Roengpitya (2012). Hence, the PD estimates taken here are the PDs that yield the highest likelihood
possible, even though it will be lower than the required maximum likelihood.
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TABLE 6C: RESULTS OF PD ESTIMATION USING HYBRID BACKWARD METHOD FOR 6 AND 7-GRADE
SOVEREIGN PORTFOLIOS

Asset correlation=4%
Grade 50% 75% 90% 95% 99% 99.90% Grade 50% 75% 90% 95% 99% 99.90%

1 2.03% 2.03% 2.03% 2.03% 2.03% 2.03% 1 2.03% 2.03% 2.03% 2.03% 2.03% 2.03%
2 2.70% 2.70% 2.70% 2.70% 2.70% 2.70% 2 2.70% 2.70% 2.70% 2.70% 2.70% 2.70%
3 3.32% 5.33% 7.21% 8.57% 11.28% 13.87% 3 3.19% 3.19% 3.19% 4.70% 7.84% 11.51%
4 7.28% 8.72% 10.59% 11.84% 14.08% 16.25% 4 3.32% 3.32% 4.36% 5.93% 8.87% 12.27%
5 5.50% 6.73% 8.24% 9.39% 11.87% 14.62% 5 3.64% 5.48% 7.37% 8.64% 11.50% 14.36%
6 5.84% 8.58% 12.15% 14.85% 20.95% 29.30% 6 3.79% 4.70% 6.62% 7.80% 10.56% 13.77%

7 5.40% 6.45% 7.90% 8.95% 11.56% 14.84%

Asset correlation=12%
Grade 50% 75% 90% 95% 99% 99.90% Grade 50% 75% 90% 95% 99% 99.90%

1 2.81% 2.81% 2.81% 2.81% 2.81% 2.81% 1 2.81% 2.81% 2.81% 2.81% 2.81% 2.81%
2 3.64% 3.64% 3.64% 3.64% 3.64% 3.64% 2 3.64% 3.64% 3.64% 3.64% 3.64% 3.64%
3 9.15% 13.10% 18.46% 22.52% 29.01% 32.57% 3 4.23% 4.23% 9.57% 12.95% 22.11% 30.23%
4 15.24% 19.60% 24.71% 27.13% 32.94% 35.62% 4 4.39% 6.36% 11.70% 14.95% 23.55% 31.04%
5 9.43% 12.40% 16.29% 19.48% 25.93% 32.60% 5 8.25% 12.36% 16.99% 20.43% 27.00% 33.38%
6 7.16% 11.01% 16.27% 20.32% 29.81% 42.64% 6 4.93% 8.65% 13.01% 15.71% 23.59% 31.91%

7 7.41% 9.67% 13.28% 15.69% 22.57% 30.66%

The PD estimates from the hybrid backward model are less conservative, if not equal, than the PD estimates

from the hybrid forward model, as proven in Roengpitya (2012). Also, we can see that the rank-order problem

still appears under this method, as shown in bold font.

2.2.5 Comparison of PD Estimates From Various Methods

The comparison between the hybrid models and the most prudent method yields that, for most rating grades,

the hybrid MLE and the hybrid backward produce higher PDs, except for the highest risk grade with confidence

intervals greater than 75% as well as for the constrained PD case of the hybrid backward method. However, for the

hybrid forward method, the PDs are mostly more conservative, except for the constrained PD case also. These

comparison results are applicable for all levels of asset correlation tested.

Next, we considered the margin of conservatism approach. Putting the estimates side-by-side, it can be seen

that the three hybrid models give more conservative PDs than those calculated from the margin of conservatism

method in all rating grades and confidence levels. In addition, the differences can be huge for the highest risk

grade and confidence level. For example, for the 6-grade case with zero correlation, the PD estimates for the 6th

grade at 99.90% confidence using the hybrid MLE and hybrid backward differ by at least 4 times and about 5 times

for the hybrid foward case. This is a result of using the most prudent principle in our hybrid calculation. On the

contrary, the margin of conservatism approach will not have the rank-order problem as in the hybrid models as

long as the initial estimated PDs rank-order properly.

As discussed in Roengpitya (2012), the PD estimates from hybrid models cannot be compared directly to the

original maximum likelihood introduced by Forrest (2005) due to the intensive computational requirement. How-
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ever, since we apply the most prudent method to the maximum likelihood estimation, hereby assuming that the

PD of rating grade i behaves such that pi = pi+1 = ... = pN with N being the riskiest rating grade, we do make a

conjecture that the PD estimates from the hybrid models should be more conservative, especially for the hybrid

forward method, than the PDs from the original maximum likelihood. This conjecture needs further proving,

nevertheless. In addition, since we have not calculated the actual PDs from the original likelihood method, we do

not know the magnitude of the conservatism of our hybrid PD estimates when compared to Forrest’s calculation.

Finally, the PD estimates from Van Der Burgt (2007)’s CAP curve are relatively close to the margin of

conservatism estimates at 99.90% with zero correlation and are much less conservative than the most prudent

estimation. Consequently, they are also lower than the hybrid models. This is because the CAP curve method is

based on the principle that the estimates should also reflect the long-term average default rate. So the estimated

PDs are calibrated toward the central tendency of the portfolio–the effect which has yet to be taken into account

in the hybrid models. Other than comparing in this fashion, nothing more can be said about the effect of applying

different values of asset correlation, since the CAP curve method does not take into account explicitly the asset

correlation in the calculation of its PD estimates.

Section 3: Improvements on Existing Theoretical Approaches Regard-
ing PD Estimation of LDPs

In this section, we provide our theoretical improvements and cautions on two of the existing PD estimation of

low-default portfolios–the most prudent estimation and the CAP curve methods.

3.1 Necessary and Sufficient Conditions Ensuring the Rank Ordering of the Most
Prudent Estimation

As pointed out in Pluto and Tasche (2006), the most prudent PD estimation method outlined in the paper does

not guarantee the rank ordering of the PD estimates if “the relative number of defaults in one of the better rating

grades is significantly higher than those in lower rating grades.” We encountered this problem while using this

approach to estimate the PDs on our sovereign portfolio for the 6-grade case shown in Section 2. With this in

mind, our main task is trying to identify the necessary and sufficient conditions that will ensure the rank ordering

of the PD estimates from the most prudent approach. The summary of the most prudent calculation method

is presented in Section A3 in the appendix. The proposition of the necessary and sufficient conditions is as follows.
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Proposition 1 Let n be the number of cumulative obligors in a specific rating where the cumulation is taken

over the current and all of the worse (more risky) rating grades. Let k be the number of cumulative defaults

taken over the same rating grade horizon. Let p be the probability of default estimated for this rating grade.

The numerical solution of Pluto and Tasche (2006)’s most prudent PD estimates will retain the rank-ordering

property within a specified level of confidence γ going from the worse rating grade w to the better rating grade b

if the following conditions are met.

1. For all i = 0, 1, ..., kw, i < nw · pw

2. ∆f(n, k, p̄)|kw
i=0 =

kw∑
i=0

[(
nw + x

i

)
p̄i(1− p̄)(nw+x)−i −

(
nw

i

)
p̄i(1− p̄)nw−i

]
must be strictly negative, which

can be guaranteed through the condition


x∏

j=1

(nw + j)

x∏
l=1

(nw − i + l)
· (1− p̄)x − 1

 < 0 for i = kw

3. ∆f(n, k, p̄)|kw
i=0 +

kw+y∑
i=kw+1

(
nw + x

i

)
p̄i(1− p̄)(nw+x)−i < 0,

where kw and kb are the cumulative defaults of the worse and better rating grades consecutively and nw and nb

are cumulative obligors for each of those grades. x = nb − nw represents additional obligors added when going

from the rating w to b and y = kb − kw is the additional defaults going from the rating w to b. p̄ is a fixed PD

estimate. The proof of this proposition is in Section A6 in the appendix.

There is one point worth noting. Generally, the estimated PDs will become more conservative as the level

of the asset correlation increases and at a higher level of confidence. Therefore, it is not surprising that the

rank-ordering property will fail more often at a higher confidence level, if the asset correlation is taken into ac-

count, because when such asset correlation is present, the upper bound of PD estimates will need to be increased,

especially at a higher level of confidence (like 99.9%). For this case, the direction and speed of an decrease in PD

estimates, going from one worse rating grade w to a better rating grade b, become less uniform and more unstable.

Therefore, it is the case where the PD estimates of the better rating grade with a higher cumulative observed

default rate is much higher than the PD estimates of a worse rating grade with lower cumulative observed default

rate, making the rank-ordering problem worse.
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3.2 Caution on Using the CAP Curve Calibration Method

In Van Der Burgt (2007), the author proposed an alternative approach for estimating PDs by calibrating the

CAP curve using the following function:

yi(x) =
1− e−kxi

1− e−k
, (3)

where yi is the cumulative default percentage and xi is the cumulative percentage of obligors for rating grade i.

The curvature of the function in Equation (3) depends on the value k, which is determined by minimizing the

following root-mean-squared error (RMSE) for a given value of yi and xi for N rating grades:

RMSE = F (k, yi, xi) =

√√√√ 1
N

N∑
i=1

{
yi −

1− e−kxi

1− e−k

}2

. (4)

One very important observation regarding the minimization of RMSE in Equation (4) is that the value of k

that minimizes RMSE is very sensitive to the number of rating grades N . In other words, the optimal k, k∗, varies

with the granularity of the rating grades or scores. This can become problematic when the modeler has to make

a choice between fitting the curve using raw ordinal scores of borrowers or using less-refined rating grades, as the

optimal k obtained from each case will be different, leading to different estimates of the PDs. Consequently, the

choices of how to fit the curve can affect the value of k, which in turn influences the predicted PDs.

For example, from the above figure, it can be seen that an increase in the number of rating grades from 5 to

8 grades also increases the optimal value of k, as the fitted CAP curve becomes more curvy. Also, note that the

actual CAP curve for a few number of ratings generally exhibits a step-function nature.

From the picture, we can also see that the determination of k depends on minimizing the difference between

the actual step-function CAP curve and the fitted CAP curve at each point of an increase in the step-function

(so-called the minimization point). Therefore, intuitively, an increase in the granularity of the rating grades does

not guarantee an increase in k. This will have to depend on how the difference at each minimization point can

be traded off across all ratings. We therefore propose the following (the proof can be found in the appendix).
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Proposition 2 Let yi be the cumulative default percentage and xi be the cumulative percentage of obligors

for rating grade i. The effect of the change in the granularity of the rating grades used to fit the function 1−e−kxi

1−e−k

to the actual step-function CAP curve on the optimal level of k, k∗, depends solely on the difference between the

fitted curve and the actual CAP curve,
{

yi − 1−e−kxi

1−e−k

}
, at each minimization point.

Since different granularity of x, i.e. number of rating grades, can affect the optimal k∗, the next question to

ask is how the change in the optimal k∗ coming from the change in x can affect the PD estimates using this CAP

curve method. We therefore propose the following.

Proposition 3 An increase in the optimal level of k, k∗, will have no effect on the CAP-curve PD estimate for

the rating grade that has the cumulative total obligors at x̂ which solves (1 − k∗x̂) = (1 − k∗x̂ + k∗)e−k∗ for a

given level of k∗. However, such increase in k∗ will lead to higher PD estimates for higher risk obligors (where x

is low or near 0) whose rating grades cumulated to x < x̂. For lower-risk borrowers (where x is high or near 1)

whose rating grades cumulated to x > x̂, an increase in k will lower PD estimates for these borrowers.

From the propositions above, it can be seen that the optimal k∗ is very sensitive to the level of granularity in

calculating the cumulative obligors (i.e. the values of x). Overfitting the actual CAP curve can lead to a high

k∗ value and, consequently, too concave function, where risky borrowers may be punished too much and good

ones too little. On the other hand, a low value of k∗ means that the accuracy ratio may be too low and the risky

obligors’ estimated PDs may be too low. Given these challenges in using the CAP-curve method in estimating

the PDs for low-default portfolios, we then propose our views as bank supervisors regarding the usage of this

method in Section 4.

To illustrate our claim further, we used our sovereign portfolio as an example. To modify the estimated PD in

the high risk grades 4 through 6, we decide to relax the RMSE minimization condition, i.e. increasing the degree

of concavity k. However as shown in Proposition 3, we need to derive the critical cumulative obligor, x̂, which

represents the cutoff value that will determine the effect of a change in k on the estimated PD. That is, for each

rating grade, if the level of cumulative obligors is less than x̂, an increase in k will increase the estimated PD and

vice versa. Based on our empirical result for the 6-grade portfolio, given the estimated k at 3.1426, we derived x̂

from equation (1 − k∗x̂) = e−k(1 − k∗x̂ + k∗) and obtained x̂ equal to 27.31%. According to Table 4 previously
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shown in Secion 2.2.2, an increase in k will yield a higher estimated PD only for grades 5 and 6. In addition, the

increase in k will severely lower the estimated PD for Grade 4. So if we intend to increase the estimated PD for

the 4th rating grade, we should decrease k instead.

TABLE 7: RESULTS OF CAP PD ESTIMATION WHEN INCREASING K

SA Grade ODR CAP PD (k = 2) CAP PD (k* = 3.1426) CAP PD (k = 4)
1 0.000% 0.686% 0.361% 0.212%
2 0.310% 1.050% 0.704% 0.498%
3 1.557% 1.436% 1.152% 0.931%
4 3.743% 2.016% 1.963% 1.834%
5 2.941% 3.061% 3.782% 4.226%
6 2.941% 3.871% 5.469% 6.759%
Average 1.688% 1.676% 1.659% 1.640%

Modified SA Grade ODR CAP PD (k = 3) CAP PD (k* = 4.2726) CAP PD (k = 5)
1 0.000% 0.290% 0.178% 0.110%
2 0.196% 0.576% 0.411% 0.292%
3 0.735% 0.769% 0.585% 0.442%
4 1.176% 0.952% 0.758% 0.599%
5 2.101% 1.233% 1.040% 0.867%
6 2.036% 1.671% 1.508% 1.339%
7 3.758% 3.522% 3.747% 3.885%
Average 1.688% 1.627% 1.593% 1.555%

Similar to the 6-grade case, the 7-grade estimated PD is quite low compared to the observed default rate,

especially for the higher risk grades. Using the optimal k∗ for this case, we get that x̂ = 21.75%. This means that

an increase in k leads to a higher PD estimate for the 7th grade only and yields lower PDs for the others. Table 7

above presents the comparison of estimated results using different values of k for both 6-grade and 7-grade cases.

Even though a decrease in k seems to provide better PD estimates, as shown in Table 7, but we have to be con-

cern about the implied predictive power of the fitted CAP curve as well. According to the relationship between the

concavity, k and the accuracy ratio (AR) derived from the fitted CAP curve, we can approximate the AR for each

type of our portfolio from the equation AUC =
∫∞
0

(
1−e−kx

1−e−k

)
dx = 1

1−e−k − 1
k , where AR = 2

[
1

1−e−k − 1
k

]
− 1.

Practically for non-retail portfolios, AR should lie within the range of 40− 80%, which corresponds to the

boundary of k approximately between 2.67− 10 from the above equation. As a result, setting k lower than 2.67

might not be appropriate for the PD estimation via the CAP curve method. In case of the 6-grade portfolio, for

example, we try to reduce k from the optimal level of 3.1426 to 2 in order to increase the estimated PD for the

4th grade. However, when lowering k to be less than 2.67, the calculated AR stands at only 31.31%, which is

lower than the minimum acceptable threshold of 40% so the estimated PD from k = 2, in our opinion, should not

be used.

To summarize, in employing the CAP curve method, one needs to think about the trade off be-

tween two aspects. On one hand, there is the accuracy of the estimated PD coming from both the

curvature and the level of the fitted CAP curve. The curvature of the curve relies on the k value, which
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can be adjusted to increase the accuracy as previously discussed. The level of the fitted curve represents how

well the average estimated PD reflects the central tendency of the portfolio, denoted as 〈D〉 in the PD estimation

formula previously mentioned in Section 2. The adjustment on the value of 〈D〉 will lead to the shift of the fitted

CAP curve, not its curvature. On the other hand, there is an issue regarding the AR sensitivity of

the fitted CAP curve previously mentioned and proved in the propositions. If this trade off does not yield a

fruitful outcome, it can be the case that the existing rating methodology may not be effective enough and there is

a need to fully review the rating methodology, such as factors used in rating model, the credibility of risk factors,

etc., instead of trying to manipulate k, 〈D〉 or AR values.

Section 4: Regulatory Recommendations for Validating PD Estimates

First and foremost, in order to verify that the PD estimates are sufficiently conservative, bank supervisors need

to understand well the theoretical foundation underlying each estimation method, its suitability to the credit

portfolio in consideration, and the possible channel where the shortfall might occur. This understanding is crucial

for identifying the advantages and downsides of each method.

For instance, the most prudent method yieds conservative PD estimates which can beneficially vary with the

level of asset correlation and can be calculated despite having no default history but however cannot guarantee

rank ordering. The hybrid models possess similar characteristics but have an add-on feature of the maximum

likelihood concept with less computation intensity. The margin of conservatism provides a logical way to scale up

the PD estimates but banks will need to have their initial PD estimates to begin with. Finally, the CAP curve

has a comprehensive way of estimating the PDs with few default data but cannot be used if there is no default

history and the estimates can be sensitive to the level of granularity.

More specifically, from what we observed in Propositions 2 and 3 of Section 3.2, there can be a case where the

different granularity used to fit the exponential function to the actual CAP curve can lead to different estimates

of k and consequently the PDs in Van Der Burgt (2007). If the fitting leads to an increase in the optimal k, k∗,

then there is an increase in the PD estimates of higher risk obligors and a decrease in PD estimates for the lower

risk obligors. Given these conditions, the accuracy ratio (AR) of the fitted curve should be higher for a higher

optimal k∗.

Therefore, when it comes to validating whether the financial institutions which choose the CAP curve method

have set an appropriate granularity (for example using raw scores versus score bands) in fitting the function to
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the actual CAP curve, regulators need to consider both the optimal level of k∗ obtained, the PD estimates as

compared to the historical default rates, and the accuracy ratio. To prevent the underfitting or overfitting of the

CAP curve from differences in the granularity levels, we recommend that the accuracy ratio of the fitted

CAP curve should be between 40% and 80%, as targeted by best-practice standards.

By restricting the AR value in this fashion, we can ensure that the curve will not be underfitted too much

that it cannot differentiate between good and bad borrowers whereas will not be overfitted so that it punishes

good obligors too little and risky obligors too much. In fact, the upper bound of the AR should ensure that the

PDs for the low-risk borrowers will not be too low such that one default happening in a lower risk grade will lead

to a backtesting failure as the observed default rate suddenly surges and becomes higher than the estimated PD.

In summary, this paper simply puts in perspective for bank supervisors how each existing estimation method

for LDPs yields different PD estimates and how they measure up to each other. This information should be used

as a part of the evaluation of PD models which should follow by constant PD backtesting to make certain that

the estimated PDs obtained from the model still reflect well the risk characteristics of the borrowers and bank

capital for absorbing the credit risk of LDPs is deemed sufficient.

Concluding Remark

The essence of this paper is comparison of the estimated PD values from various methods on low-default portfolios.

The models used in the comparison are Pluto and Tasche (2006), Van Der Burgt (2007), Benjamin, Cathcart and

Ryan (2006) and Roengpitya (2012), using the historical data of sovereign borrowers from the years 1975-2009.

Under some circumstances outlined in Roengpitya (2012) paper, the PD estimates of the hybrid models can be

more conservative than the PD estimates from the most prudent method, while Van Der Burgt’s CAP Curve

method seemed to yield the least conservative PD estimates. In addition, we also provided the necessary and

sufficient conditions in order to ensure the rank order of the PD estimates from the most prudent method, as well

as raising an important caution in employing Van Der Burgt (2007)’s CAP curve calibration, as the choice of

granularity of cumulative borrowers can affect the PD estimates. We then recommend that the upper and lower

bound of the fitted CAP curve should be between the best practice range of 40% to 80%.

The issue of PD estimates for low-default portfolios (LDPs) has been a challenge to financial institutions and

regulators alike, both in terms of coming up with appropriate PD estimates with sufficient conservatism and in

terms of validating the estimates. Therefore, both financial institutions and regulators should be aware of the
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consequence of employing these methods for PD estimations and should be able to identify incidences where the

PD estimates may be too low to cover the default risk. In all, these theories are the existing estimation tools,

which should be used in conjunction with other prudent qualitative judgments in order to ensure that the risk

will not be underestimated for this specific type of borrowers.
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Appendix

A1: Qualitative Approach to LDPs: Expert Judgment

Since developing and backtesting the PD model for low-default portfolios can be difficult, some banks have chosen

to employ the expert judgment in this case. The ratings for obligors will be assigned “subjectivity” or based on

the judgment of the experts involved in the rating assignment process. However, the downside of this approach is

the inconsistency of the final rating of obligors when rated by different officers, since the process itself is not very

transparent. To minimize this inconsistency problem, a few things can be done. In some cases, experts will follow

a loose guideline before making the final decision on the rating. In other cases, the final rating is benchmarked

against the ECAI’s ratings or, if possible, ratings of other peer banks.

The use of the expert judgment can range from using pure expert judgment alone in determining the rating

or using the judgment together with or as a part of the quantitative approach for the rating assignment. This

approach, though difficult to verify, is preferable for the LDP setting where the data is scarce; for example, for

the portfolios of large corporations, sovereigns, or financial institutions. The most important aspect of the expert

judgment model is to test, validate and update it consistently. Even though the data on validation is limited, there

may be enough to perform some basic analysis that provides updated weights given to factors in the model and

hence retain the claim of its sufficient discriminatory power (BBA-LIBA-ISDA paper). S&P also provides overall

criteria in validating the expert judgment model, which consist of the validation of risk drivers and their weights,

calibration to historical default rates and other fundamental credit knowledge (Ieraci and Ozdemir (2008)). They

also emphasized that, for the LDP, the conceptual validation is the most crucial among the three axioms used in

validation, notably conceptual soundness, confirmation of model operations, and outcomes analysis.

A2: Quantitative Approaches to LDPs: Non-theoretical Approaches

Apart from dealing with LDPs using the expert-judgment approach, one can choose to cope with the rare default

data quantitatively as follows.

1. Simple Average Approach

The simple average approach here is just using the average of default events throughout the years of data

obtained by banks as a proxy for the probability of default. This approach is quantitatively simple but, by
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the characteristics of LDPs, may not truly reflect the probability of default. The characteristics of LDPs

are that the default events rarely happen for this group of good-rating obligors and, once the default do

occur, the losses and consequences tend to be severe. Due to these characteristics, the distribution of risk

in this group of portfolios is not fully known and should be different from other portfolios. Therefore, using

just the simple average alone to assess the PD may be insufficient and misleading.

To make the matter more clear, consider an example of the recent subprime crisis. Prior to the final deal

to be acquired by JP Morgan Chase, Bear Stern’s long-term rating slipped from ‘A’ to ‘BBB’ on March 14.

While most U.S. banks weathered well through the Asian Crisis in 1997, using the average of the default

history during the past decade (covering the Asian Crisis also) as a proxy for the PD would therefore yield

a close-to-zero PD. This level of predicted PD would have been useless when it comes to assessing the

performance of Bear Stern amid the subprime crisis, which consequently led to a sudden change in the PD

before being bailed out.

2. Benchmarking with ECAI Ratings or Bond/CDS Prices

Using external ratings from various rating agencies or market prices can help banks assess the probability

of default also. Benchmarking is one of the two quantitative validation methodologies used by regulators–

notably backtesting and benchmarking. Whereas backtesting relies on the internal data, benchmarking is

based on the external data.9

There are two ways one can perform benchmarking. One is to use the ECAI ratings, which are claimed to

be through-the-cycle (TTC) by rating agencies, while the agencies focus mainly on the stability of ratings

through time. The other way is to use external data derived from the market prices, notably the bond

spreads or the credit default swap (CDS) spreads.10 The use of either bond or CDS spreads is classified to

be a point-in-time (PIT) approach, as these prices rapidly respond to changes in the economic environment.

The application of benchmarking by banks can range from applying it directly as a rating associated with a

certain obligor or using it as a benchmark for an internal rating system. Since obligors classified as being in
9It is worth noting that the BBA-LIBA-ISDA paper provided an alternative methodology related to benchmarking can be done to

obtain the rating of obligors under LDP. The logic of this method is that a central tendency (or long run average PD) from a model
with similar or comparable characteristics can be used to assign a PD for an obligor on the LDP. For example, a large corporate
model are used as a basis for assigning PDs for a project finance. This is not exactly like benchmarking, as it uses the internal model
in existence, but the method of comparison shares a similar logic.

10A bond spread is the difference in yield between a risky bond and a risk-free bond with the same maturity. The riskier the issuer
is, the higher the difference will be. CDS is a financial obligation coming from hedging for credit risks. The seller provides the buyer
with a certain amount of payment in the event of defaults in exchange for the premium in purchasing that swap. High premium
simply reflects a higher probability of default.
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LDPs are large, well-performed corporations or government organizations, the ratings or bond/CDS prices

of these entities are largely present. Though convenient as it may be, the users of benchmarking techniques

should be careful when it comes to the following concerns.

(a) Not all entities have ECAI ratings or bond/CDS prices. Since firms rated by leading external rating

agencies are generally large international firms, some local but good performing firms may not possess

the ECAI ratings, especially the decent firms in developing countries. Also, some firms may not issue

bond or have CDS traded so these prices may not be available. Banks then will need to find alternative

ways to come up with ratings for these firms.

(b) ECAI ratings or bond prices do not translate directly to accurate risk characteristics of banks’ portfolios.

As mentioned previously, the benchmarking can be done through either TTC or PIT approaches.

Therefore, the banks need to know first the principles of their internal rating systems whether it’s

concentrated on being TTC or the hybrid of TTC and PIT and then choose the right benchmarking

tool so that it will reflect the true risk characteristics of the portfolios.

For the TTC application, the ECAI ratings may be an appropriate choice. However, different external

rating agencies use various ways to calculate their ratings. The differences may lie in several areas,

ranging from the basic concept such as default definitions to very complex methodologies like cohort

approaches (factoring in rating migration) versus original approaches or how the agencies view their

‘central tendency’ concepts, not to mention various criteria used for qualitative analysis. If banks

choose to employ the ECAI ratings directly as internal ratings, they need to keep in mind the fact that

calibrating the model and obtaining the rating internally yield an advantage in a sense that the internal

models usually capture bank-specific risk characteristics better than external rating calibration, which

considers rating factors in a more general level. Realizing this gap enables banks to understand the

nature of risks they are facing and also considering limits on how and how much they can apply ECAI

ratings to their rating assignments. If the difference is small, the application of ECAI ratings should

closely approximate the true risk characteristics of banks. This is the case where the application is most

beneficial. As mentioned previously, different external rating agencies may have different approaches

in assigning ratings.

For the application of the PIT approach, one must first note that the internal rating system cannot

rely on the PIT rating alone. Under Basel II Capital Accord, the internal rating should also reflect
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somewhat the long-term tendency (or TTC rating) of counterparties. Therefore, that leaves us with

the possible “hybrid” models of the PIT and TTC. If the rating systems of banks are in fact hybrids

and should banks decided to use both approaches to mimic the credit risk approximation by these

models, then the proper application of benchmarking relies on the right weights given to the ECAI

ratings and the bond/CDS prices. For example, if the internal rating system’s PD is estimated with

a fraction of α being PIT and (1− α) being TTC, then the application of the external PIT and TTC

benchmarks should be somewhat similar to the following

PDuse = αPDB
PIT + (1− α)PDB

TTC ,

where PDB denotes the PD from the external sources to be used as benchmarks. The weight α can

either be determined from the total weights given to the PIT and TTC factors used in the calibration

of models or be assigned using expert judgment.

In Ricke and Von Pföstl (2007) compared the results of the Deutsche Bank’s internal rating with various

ECAI ratings and the CDS spreads of 9 sovereigns. Using the modified calculation of Kendall’s τ ,11 the

authors found that the correlations τ between the bank’s internal ratings and S&P, Moody’s, Fitch and

CDS spreads are 0.81, 0.86, 0.83 and 0.89 respectively. This result implies the association of the internal

rating system with those of the ECAIs and the spread. In other words, it can only be concluded that the

internal rating model has a high discriminatory power if the benchmark also possesses a high discriminatory

power. The reverse causal effect should still be examined.

In summary, benchmarking can be used to fill in the missing ratings of obligors belong in the LDPs or

benchmarking against the internal ratings. However, the application of ECAI ratings and bond/CDS prices

should be executed carefully, as the external ratings may not always reflect the bank-specific risk nature.

11There are several ways to measure the correlation (or correspondence) between two ordinally scaled variables, notably Spear-
man’s rank correlation, Somer’s D or Kendall’s τ . Spearman’s rank correlation, or Spearman’s ρ, measures the correlation non-

parametrically. In this case, the raw scores are converted to ranks and then the Spearman’s ρ is therefore ρ = 1− 6
∑

d2
i

n(n2−1)
, where di

is the distance between the ranks and n is the number of values in each data set. The other two approaches, Somer’s D and Kendall’s
τ , are somewhat related. Both approaches rely on the calculation of the number of pairs that are concordant, P , the number of pairs
that are not concordant, Q, the number of ties on variable x, x0 and the number of ties on variable y, y0. Kendall’s τ is defined as
τK = P−Q(

n
2

) , where n is the number of observations. When the sample size is large, the denominator
(n
2

)
needs to be replaced by√[(n

2

)
− x0

]
×

[(n
2

)
− y0

]
. Finally, Somer’s D is defined as dyx = P−Q

P+Q+y0
, with the assumption that x causes or predicts y. All of

these measurements yield the values between [−1, 1] with −1 being perfectly negatively correlated and 1 being perfectly positively
correlated.
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3. Enhancing Data Points

Bootstrapping. One of the frequently-used statistical approaches to deal with the scarcity of data points is

the bootstrapping method. Bootstrapping is a way of estimating properties of estimators (mean, variance,

etc.) using an approximated distribution. Ideally, if the distribution is identically and independently

distributed (i.i.d.), bootstrapping involves creating resampled data of the observed dataset by sampling

randomly (in some cases with a replacement) from the original dataset. This method usually works well

with a large sample size but becomes less reliable in a small sample setting.

The application of bootstrapping to LDPs is mainly to create the otherwise-scarce default event data in

order to gain statistical significance in the calibrated models. There are two possible concerns regarding the

application of bootstrapping method to LDPs.

(a) Sample size and the number of resampling. In theory, as the sample size (that is the number of data

points in a resample) N is approaching infinity, the bootstrap sampling distribution should be quite

similar to the sampling distribution. Especially, for a sample size of N ≈ 30 − 50, the standard error

obtained from bootstrapping, σboot, is (almost) indistinguishable from the true standard error, provided

that the original sample is truly a random one. However, for the bootstrap mean, µboot, the larger

sample size N is needed.

The observations above lead to the question of how large should the sample size be for the application

to LDPs? This surely depends on the availability and the nature of the LDP default data. If the

data points are too scarce or the sample is not completely random (which is usually the case for LDPs

where the distribution of defaults is skewed), then bootstrapping results can be unreliable. If the

such requirements on the data are not a problem, then the next question is how many times should

we resample from the sample distribution? Efron and Tibshirani (1993) suggested that, to obtain the

reliable bootstrap standard error, one needs to resample about 200 times and about 1000 resampling for

the confidence interval which is quite calculation-intensive. Therefore, in order to apply bootstrapping

to the LDP case, one should keep in mind the limitations and requirements of the bootstrap method

and make sure that sample size and number of resampling are large enough.

(b) Ensuring the predictive power–backtesting. Gaining sufficient data points from bootstrapping does

not ensure that the model based on this bootstrapped data will yield a good predictive power and
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hence good backtesting results. There are two possible reasons why the bootstrap-based model may

not predict the PD well. First, as discussed above, specific requirements on the availability and nature

of the data need to be met for the bootstrap estimation to be reliable. The failure to control for such

factors may eventually lead to unimpressive predictive power due to biased estimations. Second, even

if the methodology is well-controlled, there might not be sufficient data to backtest the results of the

model or there is a chance that the predicted PD still does not reflect the true PD.

However, bootstrapping provides a mean to generate the non-existing data points but the application of this

statistical tool will need to be executed carefully due to the limitation of the methodology and the nature

and availability of the data.

Creating multiple observations. It is worth mentioning another issue relating to obtaining additional

data points, which is to enhance the data set by performing multiple observation sampling. Lucas (2007)

pointed out that enhancing data points by sampling the same obligor at different time periods created the

100% correlation between these data points, since the data points came from the same obligor. The problem

is that the usual linear or logistic regression assumes that the data points are independent. Therefore, the

model experts will need to employ their own judgment to whether the regression is over-fitted or not from

using the highly-correlated sampled data points.

Changing definitions. Another way to obtain additional default data is by expanding the time periods

covered and, in some cases, relaxing the default definition, although the calibration will follow the required

time period and default definition. Bias can arise from expanding the sample period due to new cohorts

entering the data pool. For example, if the time period is expanded from one to two years, then the latest

cohort entered will only have one year of history versus other cohorts with two, leading to the bias since

one-year data may be quite different from the two-year data. Usually, the difference between the one and

two-year cohort is that the one-year cohort will have a better credit history. Lucas (2007) suggested that

there are a few ways one can minimize this problem. The better way is to weight the observations or use the

survival analysis. The less popular way is to include only the full time period data, which is not preferred

since the latest cohort data is excluded unnecessarily.

4. Modifying Existing Models or Creating New Approaches

Because of the scarcity of data for LDPs, applying the existing models to this group of obligors directly and
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obtaining unbiased estimations of parameters may not be possible. Some theory-based models have been

developed to cope with these LDPs. Although the application of such models may not have been executed

by most banks at present, it is worth mentioning these models as it is possible that they may be used in the

future. Some of the models involve modifying the existing credit risk modeling concepts, such as calculating

the conservative upper bounds for the PD range (Pluto and Tasche (2006)) or modifying the Bayesian model

to fit the LDPs (Dwyer (2006)). Other new approaches have to do with applying the statistical concepts

to LDPs, such as the likelihood estimation (Forrest (2005)) or calibrating using cumulative accuracy profile

(Van Der Burgt (2007)). These are the models employed in this paper.

A3: Pluto and Tasche’s Most Prudent Estimation Equations

Pluto and Tasche (2006) discussed in detail one of the best ways to cope with LDPs and gave suggestions to

the most prudent estimation principle. The authors aimed at providing the upper confidence bounds for the PD

estimation, while preserving the rank-order requirement of the PD estimation. This piece of literature provides

a possible solution to the problem of estimating the PDs for LDPs and also for portfolios with no default event.

The model has the following assumptions.

1. Assumption #1. There are three rating grades A,B, and C, with each rating having nA, nB and nC

number of obligors. A is the highest rating while C is the lowest. Let pA, pB and pC be the probability of

default for each rating grade.

2. Assumption #2. The three ratings above satisfy the rank order requirement. That is, using the fact that

A is the highest rating, we must have

pA ≤ pB ≤ pC . (A-1)

The inequality above implies that the rank order is correct in a sense that pA cannot be greater than pB and

pC . For the case where there are a few default events but no asset correlation, we need to find the upper bound

for pA. Recall that the most prudent estimation implies that the condition is pA = pB = pC and therefore we

have a homogeneous sample size of nA + nB + nC . Next, we need to find first the probability of observing not

more than three default events, which is simply expressed by the binomial distribution,

3∑
i=0

(
nA + nB + nC

i

)
(pA)i(1− pA)(nA+nB+nC)−i. (A-2)
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Therefore, the upper bound of pA can be calculated by solving the following inequality

1− γ ≤
3∑

i=0

(
nA + nB + nC

i

)
(pA)i(1− pA)(nA+nB+nC)−i. (A-3)

Similarly, the upper bound for pB with the sample size nB + nC can be obtained by solving

1− γ ≤
3∑

i=0

(
nB + nC

i

)
(pB)i(1− pB)(nB+nC)−i. (A-4)

Finally, for pC , we will only consider the rating grade C. Therefore, there is only one default event and

consequently we need to find the probability of observing no more than one default event. So, the upper bound

is calculated from

1− γ ≤
1∑

i=0

(
nC

i

)
(pC)i(1− pC)nC = (1− pC)nC + nCpC(1− pC)nC−1. (A-5)

A4: One Factor Model

One-factor Binomial model. The one-factor mentioned in the correlated default event case is derived from

the model used in the BCBS’ Studies on the Validation of Internal Rating Systems. The idea behind this is to

first realize that the log-return of the asset value between period T and period 0, ri = log
(

Ai
T

Ai
0

)
, depends on the

composite factor of firm i, Φi, and the residual or the idiosyncratic part of the firm’s asset value log-return, εi.12

Therefore, we have the following relationship:

ri = βiΦi + εi i = 1, ...,m. (A-6)

Here, βi measures the linear correlation between ri and Φi. Alternatively, one can also look at the coefficient

of determination of the regression above by looking at the R-squared, R2 = β2
i V ar(Φi)
V ar(ri)

, of this regression. This

R-squared value measures how much the variability of ri can be explained by Φi. Therefore, the relationship if

ri is often written as

ri = RiΦi + εi i = 1, ...,m. (A-7)

Generally, ri ∼ N(0, 1), Φi ∼ N(0, 1) and εi ∼ N(0, 1−R2
i ).

Bernoulli loss statistics

Using the framework above, we can use the asset value Ai
T as a latent variable driving the default event. Let

Li ∼ B(1; pi) be the ith element of the vector L=(L1, ..., Lm), where Li = 1 with probability pi and Li = 0 with
12Usually, the composite factor Φi is the weighted sum of both the industry and country factors and therefore is a proxy for the

systematic risk of the counterparty i.
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probability 1−pi. The vector L=(L1, ..., Lm) is called the Bernoulli loss statistics. Using the concept of Bernoulli

loss statistics, we can use Ai
T to define the default event as:

Li = 1Ai
T <Ci

∼ B(1; P[Ai
T < Ci]) i = 1, ...,m, (A-8)

where Ci is the critical threshold of firm i such that the firm defaults if and only if Ai
T < Ci.

Recall that ri = log
(

Ai
T

Ai
0

)
and Ai

0 is some fixed value of firm i’s assets at time 0, Ai
T hence has a one-to-one

relationship with ri and we can rewrite the loss statistics as

Li = 1ri<ci ∼ B(1; P[ri < ci]) i = 1, ...,m, (A-9)

where ci is the threshold Ci after transforming Ai
T to ri. In addition, we can apply equation (A-7) to the default

threshold ri < ci to and rewrite it as

εi < ci −RiΦi i = 1, ...,m. (A-10)

Calculating for the PD

Since the probability of default is calculated forward-looking for one year, we are interested in the case where

T = 1. Let pi denote the probability of default for obligor i. Since the obligor will default if the asset value slips

below the threshold, then pi = P(ri < ci) where P(·) denotes the probability function. Since ri ∼ N(0, 1), it must

be that pi = N(ci), where N is the cumulative normal distribution. Rewriting yields

ci = N−1(pi) i = 1, ...,m. (A-11)

Substitute equation (A-11) into equation (A-10) and normalize by the standard deviation of εi,
√

1−R2,

equation (A-10) is therefore,

ε̃i <
N−1(pi)−RiΦi√

1−R2
i

, ε̃i ∼ N(0, 1). (A-12)

Recall from equation (A-10) that obligor i will default if εi < ci−RiΦi (which comes from the default condition

ri < ci). However, we have transformed εi to be ε̃i by means of normalization. Hence, the obligor i will default

if ε̃i < N−1(pi)−RiΦi√
1−R2

i

. Since, ε̃i ∼ N(0, 1), the probability of default for obligor i is then,

pi(Φi) = N

(
N−1(pi)−RiΦi√

1−R2
i

)
i = 1, ...,m, (A-13)

where again N(·) is the cumulative normal distribution. The PD pi(Φi) depends on the composite factor Φi,

which is assumed to have some randomness. Equation (A-13) can also be calculated conditional on Φi = z:

pi(z) = N

(
N−1(pi)−Riz√

1−R2
i

)
i = 1, ...,m, (A-14)
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One factor model

The one factor model assumes that there is only one single factor common to all obligors and consequently the

asset correlation between obligors is uniform. Therefore, the composite factors Φi of all obligors depend on one

single factor, denoted by Y ∼ N(0, 1). Instead of ri being defined as in equation (A-7), ri can be formulated as

ri =
√

ρY +
√

1− ρZi i = 1, ...,m, (A-15)

where ri can be thought of as a weighted average of the single common factor and the residual component

Zi ∼ N(0, 1) specific to obligor i. The uniform asset correlation ρ captures the extent of how much the common

factor affects the asset return ri. If assets are perfectly correlated among firms, then ρ = 1 and the return on

assets will depend solely on the common factor and not the firm-specific residual at all.

The one-factor model treats the asset correlation ρ to be equal to the R-squared defined from the regression

in equation (A-6), ρ = Ri. With the assumption of ri in equation (A-15), we can modify the PD calculation

accordingly. Here, ri ∼ N(0, 1) still and the threshold ri < ci still applies. So, equation (A-11) still holds. The

modification of equation (A-10) comes from ri =
√

ρY +
√

1− ρZi < ci and so

Zi <
ci −

√
ρY

√
1− ρ

=
N−1(pi)−

√
ρY

√
1− ρ

. (A-16)

Since Zi is already normally distributed with N(0, 1), we can calculate directly the PD as in equation (A-13) as

pi(Y ) = N
(

N−1(pi)−
√

ρY
√

1− ρ

)
i = 1, ...,m, (A-17)

Calculating the probability for the group of obligors

Using the PD from equation (A-17), we can apply it and calculate the number of defaults in a group of obligors

by using the concept of probability. The probability of observing k defaults from a group of n obligors is(
n

k

)
pk

g(1− pg)n−k,

where pg is the probability of default for this group of obligors.

Using the the probability defined in (A-17), if one wants to find the probability of observing 1 default (D = 1)

in a group of n obligors for a specific level of Y = ȳ, the probability is then

P(D = 1) =
(

n

1

)
pg(Y = ȳ)(1− pg(Y = ȳ))n−1 =

(
n

1

)
N
(

N−1(pg)−
√

ρȳ
√

1− ρ

)(
1− N

(
N−1(pg)−

√
ρȳ

√
1− ρ

))n−1

(A-18)

Note that the probability of observing no default in a group of n obligors is then

P(D = 0) =
(

1− N
(

N−1(pg)−
√

ρȳ
√

1− ρ

))n

(A-19)
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However, if one wants to figure out the probability of observing no more than 3 defaults in this group of

obligors for Y = ȳ, the probability is then

P(D ≤ 3) =
3∑

k=0

(
n

k

)
N
(

N−1(pg)−
√

ρȳ
√

1− ρ

)k (
1− N

(
N−1(pg)−

√
ρȳ

√
1− ρ

))n−k

(A-20)

Finally, we need to factor in the fact that Y ∼ N(0, 1) so the probability of observing no more than 3 defaults in

this group of obligors for all possible values of Y is then

P(D ≤ 3) =
∫ ∞

−∞

3∑
k=0

(
n

k

)
N
(

N−1(pg)−
√

ρy
√

1− ρ

)k (
1− N

(
N−1(pg)−

√
ρy

√
1− ρ

))n−k

ϕ(y)dy, (A-21)

where equation (A-21) is the integration of equation (A-20) over all possible values of Y and ϕ(y) is the standard

normal density function.

A5: Sovereign Debt Crisis Table

Table A1 presents the sovereign debt crisis episodes between the years 1975-2008 used in this study.

TABLE A1: SOVEREIGN DEBT CRISIS EPISODES DURING THE
YEARS 1975-2008

Year of the Crisis Number of Defaults Countries

1975 1 Zimbabwe
1976 2 Congo, Peru
1978 3 Jamaica, Peru, Turkey
1979 2 Nicaragua, Sudan
1980 2 Bolivia, Peru
1981 8 Costa Rica, Dominican Republic, El Salvador, Honduras,

Jamaica, Madagascar, Poland, Romania
1982 7 Argentina, Ecuador, Haiti, Malawi, Mexico, Nigeria,

Turkey
1983 13 Brazil, Burkina Faso, Chile, Ivory Coast, Morocco, Niger,

Panama, Peru, Philippines, Sierra Leone, Uruguay,
Venezuela, Zambia

1984 1 Egypt
1985 1 Cameroon
1986 7 Bolivia, Gabon, Madagascar, Morocco, Paraguay, Roma-

nia, Sierra Leone
1987 2 Jamaica, Uruguay
1988 1 Malawi
1989 1 Jordan
1990 2 Uruguay, Venezuela
1991 3 Algeria, Ethiopia, Russia
1994 1 Kenya
1995 1 Venezuela
1997 2 Sierra Leone, Sri Lanka
1998 3 Indonesia, Pakistan, Ukraine
1999 2 Ecuador, Gabon
2000 2 Ivory Coast, Zimbabwe
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TABLE A1: SOVEREIGN DEBT CRISIS EPISODES DURING THE
YEARS 1975-2008

Year of the Crisis Number of Defaults Countries

2001 1 Argentina
2002 2 Gabon, Indonesia
2003 2 Paraguay, Uruguay
2004 3 Cameroon, Grenada, Paraguay
2005 3 Dominican Republic, Grenada, Venezuela
2006 2 Belize, Grenada
2008 2 Ecuador, Seychelles

This table presents the sovereign debt crisis episodes between 1975-2008 used in the study. The data for the
years 1975-2002 comes from Savona and Vezzoli (2008) and the data for the years 2003-2008 is from S&P
Sovereign Ratings History as of December 2009.

A6: Mathematical Proofs of the Necessary and Sufficient Conditions

The mathematical proofs and proposition of the necessary and sufficient conditions for the rank ordering of PD

estimates are as follows. Let n be the number of cumulative obligors in a specific rating where the cumulation is

taken over the current and worse rating grades. Let k be the number of cumulative defaults taken over the same

rating grade horizon. Let p be the probability of default estimated for this rating grade.

To begin, we will prove the claim that, as long as the number of defaults k is such that k < n · p, then as γ

increases, so does p. First, recall the equation needed to solve for the estimated p for a specific level of γ,

f(n, k, p) =
k∑

i=0

(
n

i

)
pi(1− p)n−i = 1− γ. (A-22)

As γ increases and 1−γ decreases, what is left to show is that f(n, k, p) also decreases as p increases to ensure the

positive correlation in the relationship of γ and p. Consequently, we will show that ∂f(n,k,p)
∂p < 0 when k < n · p.

∂f(n, k, p)
∂p

=

∂

(
k∑

i=0

(
n

i

)
pi(1− p)n−i

)
∂p

=
k∑

i=0

(
n

i

)
i · pi−1(1− p)n−i +

k∑
i=0

(
n

i

)
pi(n− i)(1− p)n−i−1(−1)

=
k∑

i=0

(
n

i

)
pi(1− p)n−i

(
i

p

)
−

k∑
i=0

(
n

i

)
pi(1− p)n−i

(
n− i

1− p

)

=
k∑

i=0

(
n

i

)
pi(1− p)n−i

(
i

p
− n− i

1− p

)

=
k∑

i=0

(
n

i

)
pi(1− p)n−i

(
i− np

p(1− p)

)
(A-23)

Clearly, the condition ∂f(n,k,p)
∂p < 0 can be guaranteed when the maximum of the cumulative defaults i, notably

k, is less than n ·p. This is what happens in our most prudent estimation for the sovereign portfolio and therefore
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we observe the monotone increase in the estimates of p as γ increases for each rating grade and for all rating

grades.

As for the condition to ensure the rank ordering of the most prudent PD estimates across rating grades with the

same value of γ, we need to calculate the change in the PD estimates, p, if f(n, k, p) changes from the change in

n, k, and p, leaving γ unchanged. From Equation (A-22) and with γ being held constant, the total differentiation

of this equation yields:

∂f

∂n
dn +

∂f

∂i
di +

∂f

∂p
dp = 0

dp = −

[
∂f
∂ndn + ∂f

∂i di
∂f
∂p

]

dp =

[
∂f
∂ndn + ∂f

∂i di

−∂f
∂p

]
(A-24)

with i = 1, 2, ...k being the variable reflecting each observed default level. Next, what is left to find is the partial

derivatives of all the terms needed in Equation (A-24). Note that the denominator of Equation (A-24) is positive

if k < n · p, since ∂f
∂p < 0 under such condition.

The partial derivative with respect to p is already calculated in Equation (A-23). Note that the top part of

Equation (A-24) measures the change in f(n, k, p) if there is going to be a change in n and i = 1, 2, ..., k, holding

p constant. The fact that both n and i are positive integers and therefore are discrete variables, measuring the

rate of change cannot come simply from differentiating Equation (A-22) with respect to the desired variables.

Since the concept of estimating the most prudent PD is based on the level of the cumulative default rate from the

worst to best rating grades, when jumping from the worse rating grade to the better rating grade, both n and

k increase at the same time but at different proportions as one incorporates additional obligors while the other

accumulates defaulted obligors both from the better rating and the former worse rating(s). This proves to be the

key as to why the rank ordering can possibly fail.

Using the concept of the incorporation of obligors from a better rating grade, we can determine the change in

f(n, k, p) as a result of the change in both n and k from such addition. Without loss of generality, let nw be the

number of cumulative obligors in an arbitrary worse rating grade with kw cumulative defaults and let nb be the

number of cumulative obligors in the next better-rated grade with kb number of cumulative defaults. Define the

additional obligors added when going from the rating w to b as x = nb −nw and define the additional defaults as

y = kb − kw. To find out how f(n, k, p) has changed due to the additional number of obligors and defaults going
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from rating grade w to b, holding p constant at p̄, we need to compute the following

∆f(n, k, p̄) = f(nb, kb, p̄)− f(nw, kw, p̄) =
kb∑

i=0

(
nb

i

)
p̄i(1− p̄)nb−i −

kw∑
i=0

(
nw

i

)
p̄i(1− p̄)nw−i, (A-25)

or writing it in terms of x and y, we have

∆f(n, k, p̄) = f(nb, kb, p̄)− f(nw, kw, p̄) =
kw+y∑
i=0

(
nw + x

i

)
p̄i(1− p̄)(nw+x)−i −

kw∑
i=0

(
nw

i

)
p̄i(1− p̄)nw−i. (A-26)

Note that we can rewrite
∑kw+y

i=0

(
nw+x

i

)
p̄i(1− p̄)(nw+x)−i as:

kw+y∑
i=0

(
nw + x

i

)
p̄i(1− p̄)(nw+x)−i =

kw∑
i=0

(
nw + x

i

)
p̄i(1− p̄)(nw+x)−i +

kw+y∑
i=kw+1

(
nw + x

i

)
p̄i(1− p̄)(nw+x)−i. (A-27)

Substituting Equation (A-27) into Equation (A-25), we have

∆f(n, k, p̄) =
kw+y∑
i=0

(
nw + x

i

)
p̄i(1− p̄)(nw+x)−i −

kw∑
i=0

(
nw

i

)
p̄i(1− p̄)nw−i (A-28)

=
kw∑
i=0

(
nw + x

i

)
p̄i(1− p̄)(nw+x)−i +

kw+y∑
i=kw+1

(
nw + x

i

)
p̄i(1− p̄)(nw+x)−i −

kw∑
i=0

(
nw

i

)
p̄i(1− p̄)nw−i

=
kw∑
i=0

[(
nw + x

i

)
p̄i(1− p̄)(nw+x)−i −

(
nw

i

)
p̄i(1− p̄)nw−i

]
+

kw+y∑
i=kw+1

(
nw + x

i

)
p̄i(1− p̄)(nw+x)−i

When considering the first term on the right-hand side of Equation (A-28), i.e. f(nb, kb, p̄) for all i = 0, 1, 2, ..., kw

compared to f(nw, kw, p̄), the change in f(n, k, p̄) will come only from the change in n. This is because, for the

first i = 0, 1, ..., kw terms, we calculate the following:

kw∑
i=0

(
nw + x

i

)
p̄i(1− p̄)(nw+x)−i −

kw∑
i=0

(
nw

i

)
p̄i(1− p̄)nw−i, (A-29)

with the only difference coming from n. However, for the second term on the right-hand side of Equation (A-28),

i.e. f(nb, kb, p̄) for i = kw + 1, ..., kb, the change in f(n, k, p̄) will come from both the changes in n and k. Note

that this additional term is not present before in f(nw, kw, p̄) and therefore will contribute wholly to the change

in f(n, k, p).

We first look at Equation (A-29). The first step is to calculate the binomial formula if nw increases by x and

compare it to the original binomial with nw. Using the fact that
(
n
i

)
can be written as

(
n
i

)
= n·(n−1)···(n−(i−1))

i·(i−1)···1 ,

such comparison for a specific level of i results in

(
nw + x

i

)
p̄i(1− p̄)(nw+x)−i −

(
nw

i

)
p̄i(1− p̄)nw−i =

x∏
j=1

(nw + j)

x∏
l=1

(nw − i + l)

(
nw

i

)
p̄i(1− p̄)(nw+x)−i −

(
nw

i

)
p̄i(1− p̄)nw−i

=
(

nw

i

)
p̄i(1− p̄)nw−i


x∏

j=1

(nw + j)

x∏
l=1

(nw − i + l)

· (1− p̄)x − 1

 . (A-30)
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Since
(
nw

i

)
p̄i(1− p̄)nw−i > 0, if the term in the parenthesis is less than zero, then the left-hand side of Equation

(A-30) will be less than zero also for a specific level of i. Summing the terms across i in Equation (A-30), we have

∆f(n, k, p̄)|kw
i=0 = f(nb, kb, p̄)− f(nw, kw, p̄)|kw

i=0

=
kw∑
i=0

(
nw + x

i

)
p̄i(1− p̄)(nw+x)−i −

kw∑
i=0

(
nw

i

)
p̄i(1− p̄)nw−i

∆f(n, k, p̄)|kw
i=0 =

kw∑
i=0

(
nw

i

)
p̄i(1− p̄)nw−i


x∏

j=1

(nw + j)

x∏
l=1

(nw − i + l)

· (1− p̄)x − 1

 . (A-31)

Therefore, Equation (A-31) represents the contribution to the change in f(n, k, p̄) coming from the first i =

0, 1, ..., kw terms of Equation (A-28). If the term in the parenthesis in Equation (A-31) is less than zero for

i = kw, then it is guaranteed that ∆f(n, k, p̄)|kw
i=0 < 0 because

x∏
j=1

(nw + j)/
x∏

l=1

(nw − i + l) is increasing in i,

making the term in the parenthesis more positive as i increases. If such condition applies, for all i = 0, 1, ..., kw,

the terms in the parentheses must be less than zero, making the final summation less than zero also.

Next, we consider the second term in Equation (A-28). Since this term is always positive and does not exist

before in the calculation for
∑kw

i=0

(
nw

i

)
p̄i(1 − p̄)nw−i, this term will contribute positively to ∆f(n, k, p̄)|kw+y

i=kw+1,

making ∆f(n, k, p̄) positive. From equations (A-24), (A-28) and (A-31) as well as using the fact that −∂f
∂p < 0 is

positive if i < n · p, we propose the following.

Proposition 1 The numerical solution of the most prudent PD estimates will retain the rank-ordering property

within a specified level of γ going from the worse rating grade w to the better rating grade b if the following

conditions are met.

1. For all i = 0, 1, ..., kw, i < nw · pw

2. ∆f(n, k, p̄)|kw
i=0 =

kw∑
i=0

[(
nw + x

i

)
p̄i(1− p̄)(nw+x)−i −

(
nw

i

)
p̄i(1− p̄)nw−i

]
must be strictly negative, which

can be guaranteed through the condition


x∏

j=1

(nw + j)

x∏
l=1

(nw − i + l)
· (1− p̄)x − 1

 < 0 for i = kw

3. ∆f(n, k, p̄)|kw
i=0 +

kw+y∑
i=kw+1

(
nw + x

i

)
p̄i(1− p̄)(nw+x)−i < 0
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A7: Mathematical Proofs of the CAP Curve Sensitivity

This section gives detailed mathematical proofs of the propositions in Section 3.2. Recall that, in Van Der Burgt

(2007), the CAP curve is calibrated using the following function:

yi(x) =
1− e−kxi

1− e−k
, (A-32)

where yi is the cumulative default percentage and xi is the cumulative percentage of obligors for rating grade i.

The curvature of the function in Equation (A-32) depends on the value k, which is determined by minimizing the

following root-mean-squared error (RMSE) for a given value of yi and xi for N rating grades:

RMSE = F (k, yi, xi) =

√√√√ 1
N

N∑
i=1

{
yi −

1− e−kxi

1− e−k

}2

. (A-33)

To prove our claims in Section 3.2, we first proposed the following.

Proposition 2 The effect of the change in the granularity of the rating grades used to fit the function 1−e−kxi

1−e−k

to the actual step-function CAP curve on the optimal level of k, k∗, depends solely on the difference between the

fitted curve and the actual CAP curve,
{

yi − 1−e−kxi

1−e−k

}
, at each minimization point.

Mathematically, we can assess the impact of the sensitivity of the k value by first differentiating Equation

(A-33) with respect to k to get the optimal k, k∗, and then see how k∗ can possibly change with the change in

xi, whose value reflects the change in the granularity of the ratings. Dropping the subscript i, the differentiation

of Equation (A-33) with respect to k yields the following:

∂F

∂k
=

1
2

 1
N

∑
allgrades

{
y − 1− e−kx

1− e−k

}2
− 1

2

·

 1
N

∑
allgrades

2 ·
{

y − 1− e−kx

1− e−k

}{
− (xe−kx(1− e−k)− (1− e−kx)e−k

(1− e−k)2

}
=

1
2

 1
N

∑
allgrades

{
y − 1− e−kx

1− e−k

}2
− 1

2

·

 1
N

∑
allgrades

2 ·
{

y − 1− e−kx

1− e−k

}{
e−k + e−kx(xe−k − e−k − x)

(1− e−k)2

} . (A-34)

The optimal value k∗ is the value of k that sets Equation (A-34) to zero. Hence, to see how the change in

the number of ratings (and hence the change in x) affects k∗, we need to assess how Equation (A-34) will change

with the change in x.
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From the equation, the first term, 1
2

[
1
N

∑
allgrades

{
yi − 1−e−kxi

1−e−k

}2
]− 1

2

, is always positive regardless of the

change in x as long as yi 6= 1−e−kxi

1−e−k for all rating grades i. Therefore, the way Equation (A-34) will change with

x depends on either the term
{

y − 1−e−kx

1−e−k

}
or the term e−k + e−kx(xe−k − e−k − x), as (1 − e−k)2 is always

positive.

We claim that the term f(x) = e−k + e−kx(xe−k − e−k − x) is always negative for x ∈ [0, 1] and k ∈ [0,∞).

We will show this in two steps. First, we show that, for the extreme values of x = 0 and x = 1, f(x) = 0 for all

k ∈ [0,∞):

x = 0 : f(x) =
1
ek

− 1
ek

= 0

x = 1 : f(x) =
1
ek

+
1
ek

(
1
ek

− 1
ek

− 1
)

= 0.

Secondly, we prove that, for all values of k ∈ [0,∞), the slope of f(x) with respect to x is decreasing where

x ∈ [0, x̄) and increasing where x ∈ (x̄, 1] for some x̄ = 1
k −

1
ek−1

and for all values of k ∈ [0,∞). We begin by

calculating the slope of f(x) = e−k + e−kx(xe−k − e−k − x) with respect to x, which is

∂f(x)
∂x

= −ke−kx(xe−k − e−k − x) + e−kx(e−k − 1). (A-35)

Since ∂f(x)
∂x represents the slope of f(x), we now show that ∂f(x)

∂x < 0 for some x < x̄. Also, note that e−k−1 < 0.

So, ∂f(x)
∂x < 0 when

−ke−kx(xe−k − e−k − x) + e−kx(e−k − 1) < 0

−k(xe−k − e−k − x) + (e−k − 1) < 0

−k

(
x− e−k

e−k − 1

)
+ 1 > 0

−k

(
x +

1
ek − 1

)
+ 1 > 0

x <
1
k
− 1

ek − 1
= x̄. (A-36)

From Equation (A-36), ∂f(x)
∂x < 0 for x ∈ [0, x̄), ∂f(x)

∂x > 0 for x ∈ (x̄, 1] and ∂f(x)
∂x = 0 at x = x̄, where

x̄ = 1
k −

1
ek−1

. Since f(x) = 0 where x = 0 and x = 1 and the slope of f(x) decreases and then increases within

the boundary x ∈ [0, 1], f(x) = e−k + e−kx(xe−k − e−k − x) ≤ 0 for x ∈ [0, 1] and for all k ∈ [0,∞).

What is left to show is that x̄ > 0. With x̄ = 1
k −

1
ek−1

, it is obvious that ek − 1 > k for all k > 0. This is

because ek − 1 = k = 0 when k = 0 and ∂ek−1
∂k = ek > ∂k

∂k = 1 for k > 0 so the function ek − 1 always has a

positive slope with the value higher than the slope of k for all k > 0. Therefore, x̄ = 1
k −

1
ek−1

> 0 for all k > 0.

Therefore, using Equation (A-34), how ∂F
∂k varies with x will depends solely on the term

{
y − 1−e−kx

1−e−k

}
. So, if
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x changes, the optimal k, k∗, that sets ∂F
∂k = 0 will be an outcome of the trade off between under and over-fitting

of the function 1−e−kxi

1−e−k at each minimization point. Proposition 2 is now proved.

Since different granularity of x can affect the optimal k∗, the next question to ask is how the change in the

optimal k∗ coming from the change in x can affect the PD estimates using this CAP curve method. We can then

assess this by differentiating the following PD equation in Van Der Burgt (2007).

PD(R) = 〈D〉 ke−kx

1− e−k
, (A-37)

where 〈D〉 is the observed default rate of rating grade R. Differentiating Equation (A-37) yields

∂PD(R)
∂k

= 〈D〉
[
(e−kx − kxe−kx)(1− e−k)− ke−kxe−k

(1− e−k)2

]
= 〈D〉 e−kx

[
(1− kx)(1− e−k)− ke−k

(1− e−k)2

]
= 〈D〉 e−kx

[
(1− kx)− (1− kx + k)e−k

(1− e−k)2

]
. (A-38)

Since 〈D〉 e−kx and (1 − e−k)2 are positive, we direct our attention to determining the sign of (1 − kx) − (1 −

kx + k)e−k in order to see whether ∂PD(R)
∂k is positive or negative.

Let g(k, x) = (1 − kx) − (1 − kx + k)e−k. Consider the extreme values of x. When x = 0, g(k, 0) =

1 − (1 + k)e−k > 0, since ek − 1 > k for all k > 0. When x = 1, g(k, 1) = (1 − k) − e−k = 1 − e−k − k < 0.

This statement can be proved by using the fact that when k = 0, 1− e−k = k = 0. Then, if we differentiate both

1− e−k and k with respect to k, the slope ∂(1−e−k)
∂k = e−k < 1 for any k > 0. Since the slope of the function k is

1, then the slope of function k exceeds that of the function (1− e−k). Therefore, (1− e−k) < k always, given the

same starting point 1− e−k = k = 0 when k = 0. Finally, an increase in k will have no effect on the PD estimate

of the rating grade at x = x̂ where x̂ is the value of x that solves (1− kx̂) = (1− kx̂ + k)e−k for a given level of

k. We therefore propose the following.

Proposition 3 An increase in the optimal level of k, k∗, will have no effect on the CAP-curve PD estimate for

the rating grade that has the cumulative total obligors at x̂ which solves (1 − k∗x̂) = (1 − k∗x̂ + k∗)e−k∗ for a

given level of k∗. However, such increase in k∗ will lead to higher PD estimates for higher risk obligors (where x

is low or near 0) whose rating grades cumulated to x < x̂. For lower-risk borrowers (where x is high or near 1)

whose rating grades cumulated to x > x̂, an increase in k will lower PD estimates for these borrowers.
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